ECS 315: In-Class Exercise \# 8

Instructions

1. Separate into groups of no more than three persons. The group cannot be the same as any of your former groups.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
3. Do not panic.

(1) Consider events A, B, C, D defined on a sample space Ω.

Suppose

$$
\begin{gathered}
P(B)=1 / 3, P(D)=1 / 4 \\
P(A \mid B)=1 / 5, P\left(A \mid B^{C}\right)=3 / 5, P(A \mid D)=1 .
\end{gathered}
$$

(a) Find $P(A \cap B)$.

$$
P(A \cap B)=P(A \mid B) P(B)=\frac{1}{5} \times \frac{1}{3}=\frac{1}{15}
$$

(b) Use the total probability theorem to find $\mathrm{P}(A)$.

$$
P(A)=P(A \mid B) P(B)+P\left(A \mid B^{c}\right) \overbrace{P\left(B^{c}\right)}^{1-P(B)=1-\frac{1}{3}=\frac{2}{3}} \times \frac{1}{3}+\frac{3}{5} \times \frac{2}{3}=\frac{1}{15}+\frac{6}{15}=\frac{7}{15}
$$

(c) Find $P(B \mid A)$. Bayes' theorem (form 1)

$$
P(B \mid A)=\frac{\operatorname{L}(A \mid B) P(B)}{P(A)}=\frac{\frac{1}{5} \times \frac{1}{3}}{\frac{7}{15}}=\frac{1}{7}
$$

(d) Find $P\left(A \mid D^{c}\right)$. Again, we apply the total probability the rem Method 1:

$$
\frac{7}{15}=1 \times \frac{1}{4}+P\left(A \mid D^{c}\right)\left(1-\frac{1}{4}\right)
$$

Method 2:

$$
P\left(A \mid D^{c}\right)=\left(\frac{7}{15}-\frac{1}{4}\right) \times \frac{4}{3}=\frac{13}{50} \times \frac{4}{3}=\frac{13}{45}
$$

$$
\begin{aligned}
& P\left(A \mid D^{c}\right)=\frac{P\left(A \cap D^{c}\right)}{P\left(D^{C}\right)}=\frac{13 / 60}{3 / 4}=\frac{13}{45} \\
& P\left(A \cap D^{C}\right)=P(A)-P(A \cap D)=\frac{7}{15}-\frac{1}{4}=\frac{13}{60}
\end{aligned}
$$

(2) Suppose $P(A)=\frac{1}{2}$ and $P(B)=\frac{1}{3}$. Find $P(A \cap B)$ to make A and B independent.

To make $A \Perp B$, we need $P(A \cap B)=P(A) P(B)$
Therefore, $P(A \cap B)=\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}$.
(3) Suppose $P(C)=\frac{1}{3}$ and $P\left(D \cap C^{c}\right)=\frac{1}{6}$. Find $P(C \cap D)$ to make C and D independent.

To make $C \| D$, we need $P(C \cap D)=P(C) P(D)$. Let $P(C \cap D)=o$.

$$
\frac{1}{3}-x \times \frac{1}{6}{ }^{D}
$$

$$
\begin{aligned}
x & =\frac{1}{3}\left(x+\frac{1}{6}\right) \\
3 x & =x+\frac{1}{6} \\
2 x & =\frac{1}{6} \\
x & =\frac{1}{12}
\end{aligned}
$$

we need $P\left(D \cap C^{c}\right)=P(D) P\left(C^{c}\right)$

$$
\frac{1}{6}=P(D)\left(1-\frac{1}{3}\right) \Rightarrow P(D)=\frac{1}{6} \times \frac{3}{2}=\frac{1}{4} \Rightarrow P(C \cap D)=P(C) P(D)=\frac{1}{3} \times \frac{1}{4}=\frac{1}{12}
$$

