ECS 315: In-Class Exercise \# 15

Instructions

1. Separate into groups of no more than three persons. The group cannot be the same as any of your former groups after the midterm.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.

Date: 01/11/2018			
Name	ID		
(nata			
Prapun	5	5	

3. Do not panic.
4. You are given an unfair coin with probability of obtaining a heads equal to 2×10^{-17} You toss this coin 2.5×10^{16} imes. Use Poisson approximation to find the probability that you get "tails for all the tosses". Let N be this RV

The number of successes $(H s)$ in n Bernoulli trials is binomial(n, p) where p is the success probability for each trial. Here we wont to find $P[N=0]$
When n is large and p is small, the binomial $R V$ can be approxinated by a Poisson($\alpha) R V$ where $\alpha=n p$

Here, $\alpha=n \times p=2.5 \times 10^{16} \times 2 \times 10^{-17}=5 \times 10^{-1}=0.5 \Rightarrow P[N=0] \approx e^{-\alpha} \frac{a^{0}}{0!}=e^{-\alpha}=e^{-0.5} \approx 0.6065$
2. Find the expected value of the random variable X defined in each part below:
a. $p_{X}(x)=\left\{\begin{array}{lll|l}\frac{x+2}{8}, & x \in\{-1,1,2\}, & x & p_{x}(x) \\ 0, & \text { otherwise. } & -1 & \frac{-1+2}{8}=\frac{1}{8} \\ 0, & 1 & \frac{1+2}{8}=\frac{3}{8} \\ 2 & \frac{2+2}{8}=\frac{4}{8}\end{array}\right\}$ Check: $\begin{aligned} & \frac{1}{8}+\frac{3}{8}+\frac{4}{8}=1=0,\end{aligned}$

$$
\mathbb{E} X=\sum_{x} x p_{x}(\alpha)=(-1) \frac{1}{8}+(1) \frac{3}{8}+(2) \frac{4}{8}=\frac{10}{8}=\frac{5}{4}=1.25
$$

b. $\quad p_{X}(x)= \begin{cases}0.25, & x=1,3, \\ c, & x=2, \\ 0, & \text { otherwise. }\end{cases}$

x	$p_{x}(a)$	$0.25+c+0.25=c+0.5$	$=1$
1	0.25	c	$=0.5$
2	$c=0.5$		
3	0.25		

$$
\mathbb{E} X=\sum_{x} x p_{x}(x)=(1) 0.25+(2) 0.5+(3) 0.25=0.25+1+0.75=2
$$

c. $F_{X}(x)=\left\{\begin{array}{ll}0, & x<0 . \\ 0.3, & 0-x<2 . \\ 1, & x \geq 2\end{array} \quad\right.$ This cdf has two jumps; one is e $x=0$ and \quad The jump sizes are 0.3 and $1-0.3=0.7$, respectively. $x=1 . ~ \$$

$$
\Rightarrow p_{x}(x)= \begin{cases}0.3, & x=0, \\ 0.7, & x=2, \\ 0, & \text { otheiwise. }\end{cases}
$$

$$
\mathbb{E} X=\sum_{x} x p_{x}(\infty)=(0) 0.3+(2) 0.7=1.4
$$

