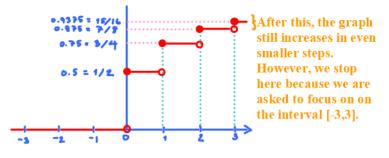
ECS 315: In-Class Exercise # 14

Instructions

- 1. Separate into groups of no more than three persons. The group cannot be the same as any of your former groups after the midterm.
- Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
- 3. Do not panic.
- 1. Suppose $X \sim \mathcal{G}_0\left(\frac{1}{2}\right)$. Plot its cdf $F_X(x)$ on the interval [-3,3].
 - $S_{x} = \{0, 1, 2, ...\}$ $P_{x}(x) = \begin{cases} P(1-p)^{x}, & x = 0, 1, 2, ..., \\ 0, & o \text{ therwise.} \end{cases}$ $P[x = 0] = \frac{1}{4}$ $P[x = 1] = \frac{1}{4}$ $P[x = 2] = \frac{1}{8}$

P[x = 3] = 1/16



2. Arrivals of customers at a local supermarket are modeled by a Poisson process with a rate of $\lambda = 0.5$ customers per minute. Let M be the number of customers arriving between 10:54 AM and 11:00 AM. What is the probability that $M \ge 2$?

$$\begin{array}{l} \lambda = 0.5 \\ z = 6 \end{array} \begin{array}{l} \alpha - \lambda \tau = 0.5 \times 6 \\ = 3 \end{array} \end{array} \qquad \begin{array}{l} P_{m}(m) = e^{-\Omega} \frac{\alpha^{m}}{m!} \\ 0.0498 & 0.1494 \\ P[m < 2] = P[m = 0] + P[m = 1] \\ = e^{-\Omega} + \alpha e^{-\Omega} = (\alpha + 1)e^{-\Omega} \approx 0.1991 \\ P[m > 2] = 1 - (\alpha + 1)e^{-\alpha} = 1 - 4e^{-3} \approx 0.8009 \end{array}$$

3. Consider (a sequence of independent) Bernoulli trials whose success probability for each trial is 1/5. For each of the random variables defined below, indicate the **name and the parameter(s)** of the family it belongs to.

	Random Variable	Family	
	K = the number of failures until the first success occurs.	$G_0(\gamma_5)$	
	N = the number of successes among the first 7 trials.	B(7, 1/5)	
This suggests conditional probability	(Optional) Suppose we know that there is exactly one success during the first 7 trials. Let $M =$ the trial position in which that success occurs	26({1,2,,7})	
	Let B_{k} be the event that the results of the Bernouli trials are $F_{k}FSF_{k}F$ failure h^{th} position $P[M=k A] = P(B_{k} A) = \frac{P(B_{h}\cap A)}{P(A)} = \frac{P(1+p)^{t}}{\binom{7}{1}P^{1}(1-p)^{t}}$		

Date: 30 / 10 / 2018			
Name	ID	ID (last 3 digits)	
Prapun	5	5	5
•			