
ECS 315: Probability and Random Processes 2017/1

HW Solution 2 — Due: Sep 7, 4 PM

Lecturer: Prapun Suksompong, Ph.D.

Problem 1. [Montgomery and Runger, 2010, Q2-54] Each of the possible five outcomes of
a random experiment is equally likely. The sample space is {a, b, c, d, e}. Let A denote the
event {a, b}, and let B denote the event {c, d, e}. Determine the following:

(a) P (A)

(b) P (B)

(c) P (Ac)

(d) P (A ∪B)

(e) P (A ∩B)

Solution : Because the outcomes are equally likely, we can simply use classical proba-
bility.

(a) P (A) = |A|
|Ω| =

2

5

(b) P (B) = |B|
|Ω| =

3

5

(c) P (Ac) = |Ac|
|Ω| = 5−2

5
=

3

5

(d) P (A ∪B) = |{a,b,c,d,e}|
|Ω| = 5

5
= 1

(e) P (A ∩B) = |∅|
|Ω| = 0

Problem 2. (Classical Probability and Combinatorics) Shuffle a deck of cards and
cut it into three piles. What is the probability that (at least) a court card will turn up on
top of one of the piles.

Hint: There are 12 court cards (four jacks, four queens and four kings) in the deck.
Solution : In [Lovell, 2006, p. 17–19], this problem is named “Three Lucky Piles”.

Method 1: When somebody cuts three piles, they are, in effect, randomly picking three
cards from the deck. There are 52 × 51 × 50 possible outcomes. The number of outcomes
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that do not contain any court card is 40× 39× 38. So, the probability of having at least one
court card is

52× 51× 50− 40× 39× 38

52× 51× 50
≈ 0.553.

Method 2: Note that our solution above, especially the part where we use the words “in
effect”, may not be so evident to some of you. If you want to solve this question directly, you
can approach it using the total probability theorem which is studied in Chapter 6. In the
beginning, we shuffle the cards. So, after the shuffling, we will have a deck of 52 cards with
all the possible 52! permutations being equally likely. (In our mind,) we label the cards with
#1 to #52 from the top to bottom. Now, the next step is to cut it into three piles. Note that
this is the same as choosing two cards (from #2 (top) to #52 (bottom)) to indicate where
the two boundaries (which are the same as the two cards at the top of second and third
piles) are. Note also that this process is usually biased. Most will try to divide the deck into
three piles of approximately equal size. So, it is unlikely that you will have the first piles
with 50 cards, the second with only one card, and the third with only one card. So, classical
probability can not be used here. We only know that there are

(
51
2

)
= 1, 275 ways to perform

the cutting for a particular deck and they are not equally likely. Let event B1, . . . , B1275

denote each of these cases. For example, B134 may be the case in which the cutting positions
are at cards #32 and #45. So, the top cards on the three piles are cards #1, #32, and #45.
Let A be the event that at least one of these cards is a court card. Of course, the “at least
one” counting problem can be simplified by considering the opposite case. Ac is the event
that none of the three top cards is a court card. So, there are 52− 12 = 40 choices for card
#1. There are 40−1 = 39 choices for card #32. There are 39−1 = 38 choices for card #45.
For the remaining 52 − 3 = 49 cards, there is no restriction. So, there are 49! choices. In
total, we have 40×39×38× (49!) shuffled patterns among the 52! equally likely possibilities
that satisfy Ac. Therefore,

P (A |B134 ) =
52!− 40× 39× 38× (49!)

52!
= 1− 40× 39× 38

52× 51× 50
≈ 0.553.

The same reasoning applies to any cutting positions. So, P (A |Bk ) ≈ 0.553 for any k. By
the total probability theorem,

P (A) =
1275∑
k=1

P (A |Bk )P (Bk) ≈
1275∑
k=1

0.553P (Bk) = 0.553
1275∑
k=1

P (Bk) = 0.553× 1 = 0.553.

Observe that we still don’t know the value of each P (Bk) but we know that the sum of them
is 1.

Problem 3. (Classical Probability) There are three buttons which are painted red on one
side and white on the other. If we tosses the buttons into the air, calculate the probability
that all three come up the same color.
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Remarks: A wrong way of thinking about this problem is to say that there are four ways
they can fall. All red showing, all white showing, two reds and a white or two whites and a
red. Hence, it seems that out of four possibilities, there are two favorable cases and hence
the probability is 1/2.

Solution : There are 8 possible outcomes. (The same number of outcomes as tossing
three coins.) Among these, only two outcomes will have all three buttons come up the same

color. So, the probability is 2/8 = 1/4 .

Problem 4. (Classical Probability and Combinatorics) A Web ad can be designed from
four different colors, three font types, five font sizes, three images, and five text phrases.

(a) How many different designs are possible? [Montgomery and Runger, 2010, Q2-51]

(b) A specific design is randomly generated by the Web server when you visit the site. If
you visit the site five times, what is the probability that you will not see the same
design? [Montgomery and Runger, 2010, Q2-71]

Solution :

(a) By the multiplication rule, total number of possible designs

= 4× 3× 5× 3× 5 = 900 .

(b) From part (a), total number of possible designs is 900. The sample space is now the
set of all possible designs that may be seen on five visits. It contains (900)5 outcomes.
(This is ordered sampling with replacement.)

The number of outcomes in which all five visits are different can be obtained by realizing
that this is ordered sampling without replacement and hence there are (900)5 outcomes.
(Alternatively, On the first visit any one of 900 designs may be seen. On the second visit
there are 899 remaining designs. On the third visit there are 898 remaining designs.
On the fourth and fifth visits there are 897 and 896 remaining designs, respectively.
From the multiplication rule, the number of outcomes where all designs are different
is 900× 899× 898× 897× 896.)

Therefore, the probability that a design is not seen again is

(900)5

9005
≈ 0.9889.

Problem 5. (Classical Probability and Combinatorics) A bin of 50 parts contains
five that are defective. A sample of two parts is selected at random, without replacement.
Determine the probability that both parts in the sample are defective. [Montgomery and
Runger, 2010, Q2-49]
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Solution : The number of ways to select two parts from 50 is
(

50
2

)
and the number of

ways to select two defective parts from the 5 defective ones is
(

5
2

)
Therefore the probability

is (
5
2

)(
50
2

) =
2

245
= 0.0082 .

Alternatively, if the two parts in the sample are selected one by one, then we may also
consider their ordering as well. In such case, we use the formula for “ordered sampling
without replacement” instead of “unordered sampling without replacement”:

(5)2

(50)2

=
5× 4

50× 49
=

2

245
= 0.0082 .

Problem 6. (Combinatorics) Consider the design of a communication system in the
United States.

(a) How many three-digit phone prefixes that are used to represent a particular geographic
area (such as an area code) can be created from the digits 0 through 9?

(b) How many three-digit phone prefixes are possible in which no digit appears more than
once in each prefix?

(c) As in part (a), how many three-digit phone prefixes are possible that do not start with
0 or 1, but contain 0 or 1 as the middle digit?

[Montgomery and Runger, 2010, Q2-45]
Solution :

(a) From the multiplication rule (or by realizing that this is ordered sampling with re-
placement), 103 = 1, 000 prefixes are possible

(b) This is ordered sampling without replacement. Therefore (10)3 = 10 × 9 × 8 = 720
prefixes are possible

(c) From the multiplication rule, 8× 2× 10 = 160 prefixes are possible.

Problem 7. (Classical Probability and Combinatorics) We all know that the chance
of a head (H) or tail (T) coming down after a fair coin is tossed are fifty-fifty. If a fair coin
is tossed ten times, then intuition says that five heads are likely to turn up.

Calculate the probability of getting exactly five heads (and hence exactly five tails).
Solution : There are 210 possible outcomes for ten coin tosses. (For each toss, there is

two possibilities, H or T). Only
(

10
5

)
among these outcomes have exactly heads and five tails.

(Choose 5 positions from 10 position for H. Then, the rest of the positions are automatically
T.) The probability of have exactly 5 H and 5 T is

2-4



ECS 315 HW Solution 2 — Due: Sep 7, 4 PM 2017/1

(
10
5

)
210
≈ 0.246.

Note that five heads and five tails will turn up more frequently than any other single
combination (one head, nine tails for example) but the sum of all the other possibilities is
much greater than the single 5 H, 5 T combination.

Extra Questions
Here are some optional questions for those who want more practice.

Problem 8. An Even Split at Coin Tossing : Let pn be the probability of getting
exactly n heads (and hence exactly n tails) when a fair coin is tossed 2n times.

(a) Find pn.

(b) Sometimes, to work theoretically with large factorials, we use Stirling’s Formula:

n! ≈
√

2πnnne−n =
(√

2πe
)
e(n+ 1

2) ln(n
e ). (2.1)

Approximate pn using Stirling’s Formula.

(c) Find lim
n→∞

pn.

Solution : Note that we have worked on a particular case (n = 5) of this problem earlier.

(a) Use the same solution as Problem 7; change 5 to n and 10 to 2n, we have

pn =

(
2n
n

)
22n

.

(b) By Stirling’s Formula, we have(
2n

n

)
=

(2n)!

n!n!
≈
√

2π2n(2n)2ne−2n(√
2πnnne−n

)2 =
4n

√
πn

.

Hence,

pn ≈
1√
πn

. (2.2)

[Mosteller, Fifty Challenging Problems in Probability with Solutions, 1987, Problem 18]

See Figure 2.1 for comparison of pn and its approximation via Stirling’s formula.
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Figure 2.1: Comparison of pn and its approximation via Stirling’s formula

(c) From (2.2), lim
n→∞

pn = 0 . A more rigorous proof of this limit would use the bounds

4n

√
4n
≤
(

2n

n

)
≤ 4n

√
3n+ 1

.

Problem 9. (Classical Probability and Combinatorics) Suppose n integers are chosen
with replacement (that is, the same integer could be chosen repeatedly) at random from
{1, 2, 3, . . . , N}. Calculate the probability that the chosen numbers arise according to some
non-decreasing sequence.

Solution : There are Nn possible sequences. (This is ordered sampling with replace-
ment.) To find the probability, we need to count the number of non-decreasing sequences
among these Nn possible sequences. It takes some thought to realize that this is exactly the
counting problem that we called “unordered sampling with replacement”. In which case, we

can conclude that the probability is

(
n+N−1

n

)
Nn

. The “with replacement” part should be clear

from the question statement. The “unordered” part needs some more thought.
To see this, let’s look back at how we turn the “ordered sampling without replacement”

into “unordered sampling without replacement”. Recall that there are (N)n distinct samples
for “ordered sampling without replacement”. When we switch to the “unordered” case, we
see that many of the original samples from the “ordered sampling without replacement” are
regarded as the same in the “unordered” case. In fact, we can form “groups” of samples
whose members are regarded as the same in the “unordered” case. We can then count the
number of groups. In class, we found that the size of any individual group can be calculated
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easily from permuting the elements in a sample and hence there are n! members in each
group. This leads us to conclude that there are (N)n/n! =

(
N
n

)
groups.

We are in a similar situation when we want to turn the “ordered sampling with replace-
ment” into “unordered sampling with replacement”. We first start with Nn distinct samples
from “ordered sampling with replacement”. Now, we again separate these samples into
groups. Let’s consider an example where n = 3. Then sequences “1 1 2”, “1 2 1”, and “2 1
1” are put together in the same group in the “unordered” case. Note that the size of this
group is 3. The sequences “1 2 3”, “1 3 2”, “2 1 3”, “2 3 1”, “3 1 2”, and “3 2 1” are in
another group. Note that the size of this group is 6. Therefore, the group sizes are not the
same and hence we can not find the number of groups by Nn/(group size) as in the sampling
without replacement discussed in the previous paragraph. To count the number of groups,
we look at the sequences from another perspective. We see that the “unordered” case, the
only information the characterizes each group is “how many of each number there are”. This
is why we can match the number of groups to the number of nonnegative-integer solutions to
the equation x1 + x2 + · · ·+ xN = n as discussed in class. Finally, note that for each group,
we have only one possible nondecreasing sequence. So, the number of possible nondecreasing
sequence is the same as the number of groups.

If you think about the explanation above, you may realize that, by requiring the “order”
on the sequence, the counting problem become “unordered sampling”.

Here, we present two direct methods that leads to the same answer.
Method 1 : Because the sequence is non-decreasing, the number of times that each of the

integers {1, 2, . . . , N} shows up in the sequence is the only information that characterizes each
sequence. Let xi be the number of times that number i shows up in the sequence. The number
of sequences is then the same as the number of solution to the equation x1 +x2 + · · ·+xN = n
where the xi are all non-negative integers. We have seen in class that the number of solutions
is
(
n+N−1

n

)
.

Method 2 : [DasGupta, 2010, Example 1.14, p. 12] Consider the following construction
of such non-decreasing sequence. Start with n stars and N − 1 bars. There are

(
n+N−1

n

)
arrangements of these. For example, when N = 5 and n = 2, one arrangement is | ∗ || ∗ |.
Now, add spaces between these bars and stars including before the first one and after the
last one. For our earlier example, we have | ∗ | | ∗ | . Now, put number 1 in the leftmost
space. After this position, the next space holds the same value as the previous on if you
pass a ∗. On the other hand, if you pass a | then the value increases by 1. Note that
because there are N − 1 bars, the last space always gets the value N . What you now have
is a sequence of n + N numbers with bars between consecutive distinct numbers and stars
between consecutive equal numbers. For example, our example would gives 1|2 ∗ 2|3|4 ∗ 4|5.
Note that this gives a non-decreasing sequence of n + N numbers. The corresponding non-
decreasing sequence of n numbers for this arrangement of stars and bars is (2,4); that is we
only take the numbers to the right of the stars. Because there are n stars, our sequence will
have n numbers. It will be non-decreasing because it is a sub-sequence of the non-decreasing
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n + N sequence. This shows that any arrangement of n stars and N − 1 bars gives one
nondecreasing sequence of n numbers.

Conversely, we can take any nondecreasing sequence of n numbers and combine it with
the full set of numbers {1, 2, 3, . . . , N} to form a set of n+N numbers. Now rearrange these
numbers in a nondecreasing order. Put a bar between consecutive distinct numbers in this
set and a star between consecutive equal numbers in this set. Note that the number to the
right of each star is an element of the original n-number sequence. This shows that any
nondecreasing sequence of n numbers corresponds to an arrangement of n stars and N − 1
bars.

Combining the two paragraphs above, we now know that the number of non-decreasing
sequences is the same as the number of arrangement of n stars and N − 1 bars, which is(
n+N−1

n

)
.

Remark : There is also a method— which will not be discussed here, but can be inferred
by finding the pattern of the sums that lead to the number of non-decreasing sequences
as we increase the value of n— that would interestingly give the number of non-decreasing
sequences as

N∑
kn−1=1

· · ·
k3∑

k2=1

k2∑
k1=1

k1.

This sum can be simplified into
(
n+N−1

n

)
by the “parallel summation formula” which is

well-known but we didn’t discuss in class because this is not a class on combinatorics.
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