Textbook: [Y&G] R. D. Yates and D. J. Goodman, Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers, 2nd ed., Wiley, 2004. Call No. QA273 Y384 2005.

Topics [Y&G]		
1. Probability and You		
a. Randomness		
b. Background on Some Frequently Used		
Examples		
i. Coins		
ii. Dice		
iii. Cards		
c. A Glimpse at Probability Theory		
i. Random experiment	p. 7-8	
ii. Outcomes and Sample space	p. 8	
iii. Event	p. 8-9	
iv. Relative Frequency	p. 12-13, 67	
v. Law of Large Numbers	p. 12-13, 67	
vi. Using MATLAB to generate and analyze	p. 40	
the sequence of coin flipping	[Y&G] uses the rand and hist	
	commands.	
2. Review of Set Theory	Section 1.1 Set Theory	
a. Venn diagram, basic set operations /identities	p. 2	
(e.g. de Morgan Laws)		
b. Disjoint sets	p. 5	
c. Partition	p. 10-11	
	(This is called event space in [Y&G])	
d. Cardinality, Finite set, Countable Sets,		
Countably Infinite Sets, Uncountable Sets,		
Singleton		
 i. Useful for checking whether a random variable is discrete or continuous 		
	n 0	
e. Terminology of set theory and probability.3. Classical Probability	p. 9	
a. Assumptions		
b. Basic properties		
4. Enumeration / Combinatorics / Counting	Section 1.8 Counting Methods	
a. Four Principles	Couldn't I o counting Wictious	
i. Addition		
ii. Multiplication	p. 28	
iii. Subtraction	r -	
iv. Division		
b. Four Kinds of Counting Problems		
i. Ordered sampling with replacement	p. 31-32	
ii. Ordered sampling without replacement	p. 29	
(<i>r</i> -permutation)	·	
Factorial and permutation	p. 29	

2. Permutations with types and multinomial coefficient iii. Unordered sampling of without replacement (r-combinations) iv. Unordered sampling with replacement 1. bars and stars argument 2. Binomial Theorem and Multinomial Theorem d. Famous Example: Galileo and the Duke of Tuscany e. Application: Success Runs 5. Probability Foundations Section 1.3 Probability Axioms Section 1.4 Some Consequences of the Axioms a. Kolmogorov's Axioms for Probability b. Consequences of Axioms p. 12 In [Y&G], the probability measure P() is represented by P[]. b. Consequences of Axioms p. 12 In [Y&G], the probability measure P() is represented by P[]. b. Consequences of Axioms p. 13, 15-16 Note that in [Y&G] with is pointed out that we can write P[AB] or P[A,B] to represent P[A∩B] p. 14 6. Event-based Independence and Conditional Probability a. Event-based Conditional Probability i. Tree diagram Section 1.7 Sequential Experiments and Tree Diagrams p. 24-28 1. Compact form b. Event-based Independence Section 1.6 Independence			
iii. Unordered sampling of without replacement (r-combinations) iv. Unordered sampling with replacement 1. bars and stars argument c. Binomial Theorem and Multinomial Theorem d. Famous Example: Galileo and the Duke of Tuscany e. Application: Success Runs 5. Probability Foundations Section 1.3 Probability Axioms Section 1.4 Some Consequences of the Axioms a. Kolmogorov's Axioms for Probability b. Consequences of Axioms p. 12 In [Y&G], the probability measure P() is represented by P[]. b. Consequences of Axioms p. 13, 15-16 Note that in [Y&G] with is pointed out that we can write P[AB] or P[A,B] to represent P[A ∩ B] c. Connection to classical probability p. 14 c. Event-based Independence and Conditional Probability a. Event-based Conditional Probability i. Tree diagram 1. Compact form		Permutations with types and	p. 33-34
replacement (r-combinations) iv. Unordered sampling with replacement 1. bars and stars argument c. Binomial Theorem and Multinomial Theorem d. Famous Example: Galileo and the Duke of Tuscany e. Application: Success Runs 5. Probability Foundations a. Kolmogorov's Axioms for Probability b. Consequences of Axioms p. 12 In [Y&G], the probability measure P() is represented by P[]. b. Consequences of Axioms p. 13, 15-16 Note that in [Y&G] with is pointed out that we can write P[AB] or P[A,B] to represent P[A∩B] c. Connection to classical probability a. Event-based Independence and Conditional Probability i. Tree diagram i. Tree diagram 1. Compact form			
is not between 0 and n. iv. Unordered sampling with replacement 1. bars and stars argument c. Binomial Theorem and Multinomial Theorem d. Famous Example: Galileo and the Duke of Tuscany e. Application: Success Runs 5. Probability Foundations a. Kolmogorov's Axioms for Probability p. 12 In [Y&G], the probability measure P() is represented by P[]. b. Consequences of Axioms p. 13, 15-16 Note that in [Y&G] with is pointed out that we can write P[AB] or P[A,B] to represent P[A∩B] c. Connection to classical probability a. Event-based Independence and Conditional Probability i. Tree diagram j. 16-21 Section 1.7 Sequential Experiments and Tree Diagrams p. 24-28 1. Compact form	iii.	Unordered sampling of without	p. 29-31
iv. Unordered sampling with replacement 1. bars and stars argument 2. Binomial Theorem and Multinomial Theorem 3. Famous Example: Galileo and the Duke of Tuscany 4. Application: Success Runs 5. Probability Foundations 5. Probability Foundations 6. Kolmogorov's Axioms for Probability 7. Description of Probability 8. Consequences of Axioms 9. 12 1. In [Y&G], the probability measure P() is represented by P[]. 8. Note that in [Y&G] with is pointed out that we can write P[AB] or P[A,B] to represent P[A∩B] 9. 14 6. Event-based Independence and Conditional Probability 1. Tree diagram 1. Tree diagram 3. Section 1.5 Conditional Probability 5. P. 13. Tought form 1. Compact form		replacement (r-combinations)	[Y&G] also defines the formula for <i>r</i> that
1. bars and stars argument c. Binomial Theorem and Multinomial Theorem d. Famous Example: Galileo and the Duke of Tuscany e. Application: Success Runs 5. Probability Foundations Section 1.3 Probability Axioms Section 1.4 Some Consequences of the Axioms a. Kolmogorov's Axioms for Probability p. 12 In [Y&G], the probability measure P() is represented by P[]. b. Consequences of Axioms p. 13, 15-16 Note that in [Y&G] with is pointed out that we can write P[AB] or P[A,B] to represent P[A∩B] c. Connection to classical probability p. 14 6. Event-based Independence and Conditional Probability a. Event-based Conditional Probability i. Tree diagram Section 1.5 Conditional Probability p. 16-21 i. Tree diagram Section 1.7 Sequential Experiments and Tree Diagrams p. 24-28			is not between 0 and n.
c. Binomial Theorem and Multinomial Theorem d. Famous Example: Galileo and the Duke of Tuscany e. Application: Success Runs 5. Probability Foundations Section 1.3 Probability Axioms Section 1.4 Some Consequences of the Axioms a. Kolmogorov's Axioms for Probability p. 12 In [Y&G], the probability measure P() is represented by P[]. b. Consequences of Axioms p. 13, 15-16 Note that in [Y&G] with is pointed out that we can write P[AB] or P[A,B] to represent P[A \cap B] c. Connection to classical probability p. 14 6. Event-based Independence and Conditional Probability a. Event-based Conditional Probability p. 16-21 i. Tree diagram Section 1.7 Sequential Experiments and Tree Diagrams p. 24-28 1. Compact form	iv.	Unordered sampling with replacement	
c. Binomial Theorem and Multinomial Theorem d. Famous Example: Galileo and the Duke of Tuscany e. Application: Success Runs 5. Probability Foundations Section 1.3 Probability Axioms Section 1.4 Some Consequences of the Axioms a. Kolmogorov's Axioms for Probability p. 12 In [Y&G], the probability measure P() is represented by P[]. b. Consequences of Axioms p. 13, 15-16 Note that in [Y&G] with is pointed out that we can write P[AB] or P[A,B] to represent P[A \cap B] c. Connection to classical probability p. 14 6. Event-based Independence and Conditional Probability a. Event-based Conditional Probability j. 16-21 i. Tree diagram Section 1.7 Sequential Experiments and Tree Diagrams p. 24-28 1. Compact form		1. bars and stars argument	
e. Application: Success Runs 5. Probability Foundations a. Kolmogorov's Axioms for Probability b. Consequences of Axioms c. Connection to classical probability a. Event-based Independence and Conditional Probability a. Event-based Conditional Probability i. Tree diagram 1. Compact form Section 1.3 Probability Axioms Section 1.4 Some Consequences of the Axioms p. 12 In [Y&G], the probability measure P() is represented by P[]. Note that in [Y&G] with is pointed out that we can write P[AB] or P[A,B] to represent P[A∩B] p. 14 Section 1.5 Conditional Probability Section 1.7 Sequential Experiments and Tree Diagrams p. 24-28	c. Binomia	_	
e. Application: Success Runs 5. Probability Foundations a. Kolmogorov's Axioms for Probability b. Consequences of Axioms c. Connection to classical probability a. Event-based Independence and Conditional Probability a. Event-based Conditional Probability i. Tree diagram 1. Compact form Section 1.3 Probability Axioms Section 1.4 Some Consequences of the Axioms p. 12 In [Y&G], the probability measure P() is represented by P[]. Note that in [Y&G] with is pointed out that we can write P[AB] or P[A,B] to represent P[A∩B] p. 14 Section 1.5 Conditional Probability Section 1.7 Sequential Experiments and Tree Diagrams p. 24-28	d. Famous	s Example: Galileo and the Duke of	
e. Application: Success Runs 5. Probability Foundations Section 1.3 Probability Axioms Section 1.4 Some Consequences of the Axioms a. Kolmogorov's Axioms for Probability p. 12 In [Y&G], the probability measure P() is represented by P[]. b. Consequences of Axioms p. 13, 15-16 Note that in [Y&G] with is pointed out that we can write P[AB] or P[A,B] to represent P[A∩B] c. Connection to classical probability p. 14 6. Event-based Independence and Conditional Probability a. Event-based Conditional Probability p. 16-21 i. Tree diagram Section 1.7 Sequential Experiments and Tree Diagrams p. 24-28 1. Compact form		•	
Section 1.4 Some Consequences of the Axioms a. Kolmogorov's Axioms for Probability p. 12 In [Y&G], the probability measure P() is represented by P[]. b. Consequences of Axioms p. 13, 15-16 Note that in [Y&G] with is pointed out that we can write P[AB] or P[A,B] to represent P[A \cap B] c. Connection to classical probability p. 14 6. Event-based Independence and Conditional Probability a. Event-based Conditional Probability p. 16-21 i. Tree diagram Section 1.7 Sequential Experiments and Tree Diagrams p. 24-28 1. Compact form	e. Applica	tion: Success Runs	
a. Kolmogorov's Axioms for Probability a. Kolmogorov's Axioms for Probability b. Consequences of Axioms b. Consequences of Axioms p. 13, 15-16 Note that in [Y&G] with is pointed out that we can write P[AB] or P[A,B] to represent P[A∩B] c. Connection to classical probability p. 14 6. Event-based Independence and Conditional Probability a. Event-based Conditional Probability p. 16-21 i. Tree diagram Section 1.7 Sequential Experiments and Tree Diagrams p. 24-28 1. Compact form	5. Probability Four	ndations	Section 1.3 Probability Axioms
a. Kolmogorov's Axioms for Probability p. 12 In [Y&G], the probability measure P() is represented by P[]. b. Consequences of Axioms p. 13, 15-16 Note that in [Y&G] with is pointed out that we can write P[AB] or P[A,B] to represent P[A∩B] c. Connection to classical probability p. 14 6. Event-based Independence and Conditional Probability a. Event-based Conditional Probability i. Tree diagram Section 1.5 Conditional Probability p. 16-21 Section 1.7 Sequential Experiments and Tree Diagrams p. 24-28 1. Compact form			Section 1.4 Some Consequences of the
In [Y&G], the probability measure P() is represented by P[]. b. Consequences of Axioms p. 13, 15-16 Note that in [Y&G] with is pointed out that we can write P[AB] or P[A,B] to represent P[A \cap B] c. Connection to classical probability p. 14 6. Event-based Independence and Conditional Probability a. Event-based Conditional Probability p. 16-21 i. Tree diagram Section 1.7 Sequential Experiments and Tree Diagrams p. 24-28 1. Compact form			Axioms
In [Y&G], the probability measure P() is represented by P[]. b. Consequences of Axioms p. 13, 15-16 Note that in [Y&G] with is pointed out that we can write P[AB] or P[A,B] to represent P[A \cap B] c. Connection to classical probability p. 14 6. Event-based Independence and Conditional Probability a. Event-based Conditional Probability p. 16-21 i. Tree diagram Section 1.7 Sequential Experiments and Tree Diagrams p. 24-28 1. Compact form	a. Kolmog	gorov's Axioms for Probability	p. 12
represented by P[]. b. Consequences of Axioms p. 13, 15-16 Note that in [Y&G] with is pointed out that we can write P[AB] or P[A,B] to represent P[A B] c. Connection to classical probability p. 14 6. Event-based Independence and Conditional Probability a. Event-based Conditional Probability p. 16-21 i. Tree diagram Section 1.7 Sequential Experiments and Tree Diagrams p. 24-28 1. Compact form		,	In [Y&G], the probability measure P() is
b. Consequences of Axioms p. 13, 15-16 Note that in [Y&G] with is pointed out that we can write P[AB] or P[A,B] to represent P[A∩B] c. Connection to classical probability p. 14 6. Event-based Independence and Conditional Probability a. Event-based Conditional Probability p. 16-21 i. Tree diagram Section 1.7 Sequential Experiments and Tree Diagrams p. 24-28 1. Compact form			
Note that in [Y&G] with is pointed out that we can write P[AB] or P[A,B] to represent P[A∩B] c. Connection to classical probability p. 14 6. Event-based Independence and Conditional Probability a. Event-based Conditional Probability p. 16-21 i. Tree diagram Section 1.7 Sequential Experiments and Tree Diagrams p. 24-28 1. Compact form	b. Consea	uences of Axioms	
that we can write P[AB] or P[A,B] to represent P[A∩B] c. Connection to classical probability p. 14 6. Event-based Independence and Conditional Probability a. Event-based Conditional Probability p. 16-21 i. Tree diagram Section 1.7 Sequential Experiments and Tree Diagrams p. 24-28 1. Compact form			l ·
c. Connection to classical probability p. 14 6. Event-based Independence and Conditional Probability a. Event-based Conditional Probability p. 16-21 i. Tree diagram Section 1.7 Sequential Experiments and Tree Diagrams p. 24-28 1. Compact form			_ ·
c. Connection to classical probability 6. Event-based Independence and Conditional Probability a. Event-based Conditional Probability b. 16-21 i. Tree diagram i. Tree diagram Section 1.7 Sequential Experiments and Tree Diagrams p. 24-28 1. Compact form			
6. Event-based Independence and Conditional Probability a. Event-based Conditional Probability 5	c Connoc	etion to classical probability	
a. Event-based Conditional Probability Section 1.5 Conditional Probability p. 16-21 i. Tree diagram Section 1.7 Sequential Experiments and Tree Diagrams p. 24-28 1. Compact form	·		ρ. 14
p. 16-21 i. Tree diagram Section 1.7 Sequential Experiments and Tree Diagrams p. 24-28 1. Compact form	,		Continue 1 F. Constituend Dephability
i. Tree diagram Section 1.7 Sequential Experiments and Tree Diagrams p. 24-28 1. Compact form	a. Event-c	based Conditional Probability	•
Tree Diagrams p. 24-28 1. Compact form			<u> </u>
p. 24-28 1. Compact form	i. Tree diagram		
1. Compact form			
·			p. 24-28
b. Event-based Independence Section 1.6 Independence		1. Compact form	
	b. Event-b	pased Independence	Section 1.6 Independence
p. 21-24			p. 21-24
c. Bernoulli Trials Section 1.9 Independent Trials	c. Bernou	lli Trials	Section 1.9 Independent Trials
p. 35-36			p. 35-36