# ECS 315: In-Class Exercise \# 7 Solution 

## Instructions

1. Separate into groups of no more than three persons. Only one submission is needed for each group. The group cannot be the same as any of your former groups.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
3. Do not panic.

| Date: $12 / 10 / 2017$ |  |  |  |  |
| :--- | :--- | :--- | :--- | :---: |
| Name |  |  |  |  |
| Prapun | 5 | 5 | 5 |  |
|  |  |  |  |  |
|  |  |  |  |  |

Consider the outcome from a random experiment in which you roll a 10-sided fair dice.
We define the following random variables from the outcomes of this experiment:

$$
X(\omega)=\omega \quad \text { and } \quad Y(\omega)=(\omega-7)^{2}
$$

(a) Find the sample space $\Omega$ for this experiment.
see next page if you start with " 0 ".

$$
\Omega=\{1,2,3, \ldots, 10\}
$$

Note that because the dice is fair,

$$
P(\{\omega\})=\frac{1}{|\Omega|}=\frac{1}{10} \text { for any } \omega \in \Omega .
$$

(b) Find $P[X=7]$.

Recall that we use square brackets to define on event from a statement about RV.

$$
\begin{aligned}
& {[x=7]=\{\omega \in \Omega: x(w)=7\}=\{7\}} \\
& P[x=7]=P([x=7])=P(\{7\})=\frac{1}{10}
\end{aligned}
$$

(c) [M2016Q10]

Find $P[Y>10]$.
Note that $Y(\omega)>10 \equiv(\omega-7)^{2}>10$

$$
\equiv \omega \in\{1,2,3\}
$$

$$
\text { Therefore, } \begin{aligned}
& {[Y>10] }=\{1,2,3\} \\
& \text { and } \\
& \qquad \begin{aligned}
P[Y>10] & =P(\{1,2,3\}) \\
& =P(\{1\})+P(\{2\})+P(\{3\}) \\
& =\frac{1}{3}+\frac{1}{3}+\frac{1}{3}
\end{aligned}
\end{aligned}
$$

$$
=\frac{3}{10}=0.3 .
$$

Alternatively, from $(w-7)^{2}>10$, we must have
$\omega-7>\sqrt{10}$ or $\omega-7<-\sqrt{10}$ $\omega>7+\sqrt{10} \quad \omega<7-\sqrt{10}$ $\omega>10.1623 \quad \omega<3.8377$
none of the $w$
in $\Omega$ sati-tics $\omega=1,2,3$

# ECS 315: In-Class Exercise \# 7 Solution 

## Instructions

1. Separate into groups of no more than three persons. Only one submission is needed for each group. The group cannot be the same as any of your former groups.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
3. Do not panic.

| Date: $12 / 10 / 2017$ |  |  |  |
| :--- | :--- | :--- | :--- |
| Name |  |  |  |
| Prapun | 5 | 5 | 5 |
|  |  |  | 5 |
|  |  |  |  |
|  |  |  |  |

Consider the outcome from a random experiment in which you roll a 10-sided fair dice.
We define the following random variables from the outcomes of this experiment:

$$
X(\omega)=\omega \quad \text { and } \quad Y(\omega)=(\omega-7)^{2}
$$

(a) Find the sample space $\Omega$ for this experiment.

Note that because the dice is fair,
$\Omega=\{0,1,2, \ldots, 9\}$

$$
P(\{\omega\})=\frac{1}{|\Omega|}=\frac{1}{10} \text { for any } \omega \in \Omega .
$$

(b) Find $P[X=7]$.

Recall that we use square brackets to define on event from a statement about RV.

$$
\begin{aligned}
& {[x=7]=\{\omega \in \Omega: X(\omega)=7\}=\{7\}} \\
& P[x=7]=P([x=7])=P(\{7\})=\frac{1}{10}
\end{aligned}
$$

(c) [M2016Q10]

Find $P[Y>10]$.
Note that $Y(\omega)>10 \equiv(\omega-7)^{2}>10$

$$
\equiv \omega \in\{0,1,2,3\}
$$

Therefore, $[Y>10]=\{0,1,2,3\}$
and

$$
P[Y>10]=P(\{0,1,2,3\})
$$

$$
=P(\{1\})+P(\{1\})+P(\{2\})+P(\{3\})
$$

$$
=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}
$$

$$
=\frac{4}{10}=0.4
$$

Alternatively, from $(w-7)^{2}>10$, we must have

$$
\begin{array}{rlrl}
\omega-7 & >\sqrt{10} & \text { or } & \omega-7 \\
\omega & >7+\sqrt{10} & \omega<7-\sqrt{10} \\
\omega & >10.1623 & \omega<3.8377 \\
\Downarrow & \Downarrow \\
\text { none of the } \omega & \omega=0,1,2,3 \\
\text { in } \Omega & & \\
\text { this statistics } & &
\end{array}
$$

## ECS 315: In-Class Exercise \# 8 Solution

## Instructions

1. Separate into groups of no more than three persons. Only one submission is needed for each group. The group cannot be the same as any of your former groups.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
3. Do not panic.

Consider a random variable whose pmf is given by $p_{X}(x)=\left\{\begin{array}{lll}\frac{1}{4}, & x=1,9, & \text { er } \\ c, & x=4, & 1 \\ 0, & p_{x}(a) \\ 0, & 4 / 4 \\ & & 9\end{array}\right.$
a) Find the constant $c$.

$$
\begin{aligned}
\sum_{x} p_{x}(a)=1 \Rightarrow p_{x}(1)+p_{x}(4)+p_{x}(9) & =1 \\
\frac{1}{4}+c+\frac{1}{4} & =1 \Rightarrow c=\frac{1}{2}
\end{aligned}
$$

b) Plot $p_{X}(x)$. (Recall that we use stem plot for pmf.)

c) Find $P[X \leq 5]$.

$$
P[x \leqslant 5]=P[x=4]+P[x=1]=\frac{1}{2}+\frac{1}{4}=\frac{3}{4} .
$$

d) Find $P[X>4]$. $=P[x=9]=\frac{1}{4}$
e) Find $P[X \leq 4]=P[x=1]+P[x=4]=\frac{1}{4}+\frac{1}{2}=\frac{3}{4}$
f) Find $P[X \leq 3.99] .=p[x=1]=\frac{1}{4}$
g) Find $P[X \leq 4.01]$. $=P[X=1]+P[X=4]=\frac{1}{4}+\frac{1}{2}=\frac{3}{4}$.


ECS 315: In-Class Exercise \# $\underline{9}$ Solution

## Instructions

. Separate into groups of no more than three persons. Only one submission is needed for each group. The group cannot be the same as any of your former groups.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
3. Do not panic.

| Date: 02/ 11/ 2017 |  |  |  |
| :--- | ---: | ---: | :--- |
| Name |  |  |  |
| Prapun | 5 | 5 | 5 |
|  |  |  |  |
|  |  |  |  |

Consider the random variable specified in each part below.
i) Write down its (minimal) support.
ii) Write down its pmf.
iii) Find $\mathrm{P}[\mathrm{X}<1$ ]
iv) Find $\mathrm{P}[1<\mathrm{X} \leq 2]$

| The support, for all  <br> of these $R V$ contain All of these $R V$ are <br> $0,1, \ldots$  <br> integer-valued.  |  |
| :--- | :--- |
| Therefore, Therefore |  |
| $P[x<1]=P[x=0]$ | $P[1<x \leqslant 2]=P[x=2]$ |


|  |  | Support | pmf | $\mathrm{P}[\mathrm{X}<1]$ | $\mathrm{P}[1<\mathrm{X} \leq 2]$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (a) | $X \sim \operatorname{Bernoulli}\left(\frac{1}{2}\right)$ | $\{0,1\}$ | $\left\{\begin{array} { l l }  { 1 - p , } & { x = 0 , } \\ { p , } & { x = 1 , } \\ { 0 , } & { \text { otherwise. } } \end{array} \quad \left[^ { p = 1 / 2 } \quad \left\{\begin{array}{ll} 1 / 2, & x=0,1, \\ 0, & \text { otherwise } \end{array}\right.\right.\right.$ | $1 / 2$ | $\bigcirc$. |
| (b) | $\begin{aligned} & x \sim \operatorname{Binomial}\left(4, \frac{1}{4}\right) \\ & n=4, p=1 / 4 \end{aligned}$ | $\{0,1,2,3,4\}$ | $\left\{\begin{array}{l} \binom{4}{x}\left(\frac{1}{4}\right)^{x}\left(\frac{3}{4}\right)^{4-a}, x=0,1,2,3,4,4 \\ 0, \\ \text { otherwive } \end{array}= \begin{cases}81 / 256 \approx 0.3164, & x=0, \\ 27 / 44 & 20.04219, \\ 27 / 128 \approx 0.2109, & x=2, \\ 3 / 64 \approx 0.0468, & x=3, \\ 1 / 256 \approx 0.0039, & x=4, \\ 0, & 0 \text { therwie }\end{cases}\right.$ | $\frac{81}{256} \approx 0.3164$ | $\frac{27}{128} \approx 0.2109$ |
| (c) | $\begin{gathered} x \sim \operatorname{Poisson}(1) \\ \alpha=1 \end{gathered}$ | $\{0,1,2, \ldots\}$ |  | $\frac{1}{e} \approx 0.3679$ | $\frac{1}{2 e} \approx 0.1839$ |

# ECS 315: In-Class Exercise \#10 

## Instructions

1. Separate into groups of no more than three persons. Only one submission is needed for each group. The group cannot be the same as any of your former groups.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.

| Date: $\mathbf{0 7} / \underline{11} / 2017$ |  |  |  |
| :--- | :--- | :--- | :--- |
| Name |  |  |  |
| Prapun | $\mathbf{5}$ | $\mathbf{5}$ | $\mathbf{5}$ |
|  |  |  |  |
|  |  |  |  |

3. Do not panic.

Consider a random variable whose emf is given by $p_{X}(x)=\left\{\begin{array}{ll}\frac{6}{11 x}, & x=1,2,3, \\ 0, & \text { otherwise. }\end{array}\right.$.
a) Find $\mathbb{E}_{X} X=\sum_{x} x p_{x}(a)=\sum_{x} x \frac{6}{11 \not x}=3 \times \frac{6}{11}=\frac{18}{11}$

There are three values in the support of $x$. Therefore, the sum here has
three $x$-values.
b) Let $Y=(X-2)^{2}$.
a. Find $p_{Y}(y)$.

b. Find $\mathbb{E} Y$. $=0 \times \frac{3}{11}+1 \times \frac{8}{11}=\frac{8}{11}$

$$
\begin{aligned}
& \text { Alternatively, with } g(x)=(x-2)^{2} \text {, } \\
& \begin{aligned}
\mathbb{E}[Y] & =\mathbb{E}[\underbrace{g(X)}_{Y}]=\sum_{x} g(x) p_{x}(x)=\sum_{x}(x-2)^{2} \frac{6}{11 x} \\
& =1 \times \frac{6}{11}+0 \times \frac{3}{11}+1 \times \frac{2}{11}=\frac{8}{11}
\end{aligned}
\end{aligned}
$$

## ECS 315: In-Class Exercise \#11 Solution

## Instructions

1. Separate into groups of no more than three persons. Only one submission is needed for each group. The group cannot be the same as any of your former groups.
2. Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.
3. Do not panic.


Consider a continuous random variable whose pdf is given by $f_{X}(x)=\left\{\begin{array}{ll}\frac{1}{9} x^{2}, & x \in[0,3], \\ 0, & \text { otherwise. }\end{array}\right.$.
a) Plot $f_{X}(x)$

$$
f_{x}(3)=\frac{1}{9} \times 3^{2}=1
$$


b) Find $P[1<X<2]$

$$
P[1<x<2]=\int_{1}^{2} f_{x}(x) d x=\int_{1}^{2} \frac{1}{9} x^{2} d x=\left.\frac{1}{9} \frac{x^{3}}{3}\right|_{1} ^{2}=\frac{8-1}{27}=\frac{7}{27}
$$

c) Find $P[X<1]$

$$
\begin{aligned}
P[x<1] & =P[-\infty<x<1]=\int_{-\infty}^{1} f_{x}(x) d x=\int_{-\infty}^{0} \overbrace{f_{x}}^{0}(x) d x+\int_{0}^{1} f_{x}(x) d x \\
& =0+\int_{0}^{1} \frac{1}{9} x^{2} d x=\left.\frac{1}{27} x^{3}\right|_{0} ^{1}=\frac{1}{27}
\end{aligned}
$$

d) Find $P[X>4]$

$$
P[x>4]=P[4<x<\infty]=\int_{4}^{\infty} f_{x}(x) d x=\int_{4}^{\infty} 0 d x=0
$$

