
ECS 315: Probability and Random Processes 2016/1

HW Solution 8 — Due: November 1, 5 PM

Lecturer: Prapun Suksompong, Ph.D.

Problem 1. Suppose X is a random variable whose pmf at x = 0, 1, 2, 3, 4 is given by
pX(x) = 2x+1

25
.

Remark: Note that the statement above does not specify the value of the pX(x) at the
value of x that is not 0,1,2,3, or 4.

(a) What is pX(5)?

(b) Determine the following probabilities:

(i) P [X = 4]

(ii) P [X ≤ 1]

(iii) P [2 ≤ X < 4]

(iv) P [X > −10]

Solution :

(a) First, we calculate

4∑
x=0

pX (x) =
4∑

x=0

2x + 1

25
=

1 + 3 + 5 + 7 + 9

25
=

25

25
= 1.

Therefore, there can’t be any other x with pX(x) > 0. At x = 5, we then conclude
that pX(5) = 0. The same reasoning also implies that pX(x) = 0 at any x that is not
0,1,2,3, or 4.

(b) Recall that, for discrete random variable X, the probability

P [some condition(s) on X]

can be calculated by adding pX(x) for all x in the support of X that satisfies the given
condition(s).

(i) P [X = 4] = pX(4) = 2×4+1
25

=
9

25
.

(ii) P [X ≤ 1] = pX(0) + pX(1) = 2×0+1
25

+ 2×1+1
25

= 1
25

+ 3
25

=
4

25
.
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(iii) P [2 ≤ X < 4] = pX(2) + pX(3) = 2×2+1
25

+ 2×3+1
25

= 5
25

+ 7
25

=
12

25
.

(iv) P [X > −10] = 1 because all the x in the support of X satisfies x > −10.

Problem 2. The random variable V has pmf

pV (v) =

{
cv2, v = 1, 2, 3, 4,
0, otherwise.

(a) Find the value of the constant c.

(b) Find P [V ∈ {u2 : u = 1, 2, 3, . . .}].

(c) Find the probability that V is an even number.

(d) Find P [V > 2].

(e) Sketch pV (v).

(f) Sketch FV (v). (Note that FV (v) = P [V ≤ v].)

Solution : [Y&G, Q2.2.3]

(a) We choose c so that the pmf sums to one:∑
v

pV (v) = c(12 + 22 + 32 + 42) = 30c = 1.

Hence, c = 1/30 .

(b) P [V ∈ {u2 : u = 1, 2, 3, . . .}] = P [V ∈ {1, 4, 9, 16, 25}] = pV (1) + pV (4) = c(12 + 42) =

17/30 .

(c) P [V even] = pV (2) + pV (4) = c(22 + 42) = 20/30 = 2/3 .

(d) P [V > 2] = pV (3) + pV (4) = c(32 + 42) = 25/30 = 5/6 .

(e) See Figure 8.1 for the sketch of pV (v):

(f) See Figure 8.2 for the sketch of FV (v):
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Figure 8.1: Sketch of pV (v) for Question 2
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Figure 8.2: Sketch of FV (v) for Question 2

Problem 3. The thickness of the wood paneling (in inches) that a customer orders is a
random variable with the following cdf:

FX(x) =


0, x < 1

8

0.2, 1
8
≤ x < 1

4

0.9, 1
4
≤ x < 3

8

1 x ≥ 3
8

Determine the following probabilities:

(a) P [X ≤ 1/18]

(b) P [X ≤ 1/4]

(c) P [X ≤ 5/16]

(d) P [X > 1/4]
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(e) P [X ≤ 1/2]

[Montgomery and Runger, 2010, Q3-42]
Solution :

(a) P [X ≤ 1/18] = FX(1/18) = 0 because 1
18

< 1
8
.

(b) P [X ≤ 1/4] = FX(1/4) = 0.9 .

(c) P [X ≤ 5/16] = FX(5/16) = 0.9 because 1
4
< 5

16
< 3

8
.

(d) P [X > 1/4] = 1− P [X ≤ 1/4] = 1− FX(1/4) = 1− 0.9 = 0.1 .

(e) P [X ≤ 1/2] = FX(1/2) = 1 because 1
2
> 3

8
.

Alternatively, we can also derive the pmf first and then calculate the probabilities.
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