Lecturer: Prapun Suksompong, Ph.D.

Problem 1. Suppose X is a random variable whose pmf at x = 0, 1, 2, 3, 4 is given by $p_X(x) = \frac{2x+1}{25}$.

2016/1

Remark: Note that the statement above does not specify the value of the $p_X(x)$ at the value of x that is not 0,1,2,3, or 4.

- (a) What is $p_X(5)$?
- (b) Determine the following probabilities:
 - (i) P[X=4]
 - (ii) $P[X \le 1]$
 - (iii) $P[2 \le X < 4]$
 - (iv) P[X > -10]

Solution:

(a) First, we calculate

$$\sum_{x=0}^{4} p_X(x) = \sum_{x=0}^{4} \frac{2x+1}{25} = \frac{1+3+5+7+9}{25} = \frac{25}{25} = 1.$$

Therefore, there can't be any other x with $p_X(x) > 0$. At x = 5, we then conclude that $p_X(5) = 0$. The same reasoning also implies that $p_X(x) = 0$ at any x that is not 0,1,2,3, or 4.

(b) Recall that, for discrete random variable X, the probability

P [some condition(s) on X]

can be calculated by adding $p_X(x)$ for all x in the support of X that satisfies the given condition(s).

(i) $P[X = 4] = p_X(4) = \frac{2 \times 4 + 1}{25} = \boxed{\frac{9}{25}}$. (ii) $P[X \le 1] = p_X(0) + p_X(1) = \frac{2 \times 0 + 1}{25} + \frac{2 \times 1 + 1}{25} = \frac{1}{25} + \frac{3}{25} = \boxed{\frac{4}{25}}$.

(iii)
$$P[2 \le X < 4] = p_X(2) + p_X(3) = \frac{2 \times 2 + 1}{25} + \frac{2 \times 3 + 1}{25} = \frac{5}{25} + \frac{7}{25} = \left|\frac{12}{25}\right|.$$

(iv) P[X > -10] = 1 because all the x in the support of X satisfies x > -10.

Problem 2. The random variable V has pmf

$$p_V(v) = \begin{cases} cv^2, v = 1, 2, 3, 4, \\ 0, \text{ otherwise.} \end{cases}$$

- (a) Find the value of the constant c.
- (b) Find $P[V \in \{u^2 : u = 1, 2, 3, ...\}].$
- (c) Find the probability that V is an even number.
- (d) Find P[V > 2].
- (e) Sketch $p_V(v)$.
- (f) Sketch $F_V(v)$. (Note that $F_V(v) = P[V \le v]$.)

Solution: [Y&G, Q2.2.3]

(a) We choose c so that the pmf sums to one:

$$\sum_{v} p_V(v) = c(1^2 + 2^2 + 3^2 + 4^2) = 30c = 1.$$

Hence, c = 1/30.

(b)
$$P[V \in \{u^2 : u = 1, 2, 3, ...\}] = P[V \in \{1, 4, 9, 16, 25\}] = p_V(1) + p_V(4) = c(1^2 + 4^2) = \frac{17/30}{2}$$
.

(c)
$$P[V \text{ even}] = p_V(2) + p_V(4) = c(2^2 + 4^2) = 20/30 = 2/3$$
.

- (d) $P[V > 2] = p_V(3) + p_V(4) = c(3^2 + 4^2) = 25/30 = 5/6.$
- (e) See Figure 8.1 for the sketch of $p_V(v)$:
- (f) See Figure 8.2 for the sketch of $F_V(v)$:

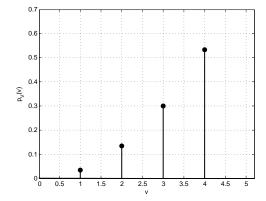


Figure 8.1: Sketch of $p_V(v)$ for Question 2

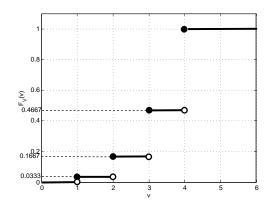


Figure 8.2: Sketch of $F_V(v)$ for Question 2

Problem 3. The thickness of the wood paneling (in inches) that a customer orders is a random variable with the following cdf:

$$F_X(x) = \begin{cases} 0, & x < \frac{1}{8} \\ 0.2, & \frac{1}{8} \le x < \frac{1}{4} \\ 0.9, & \frac{1}{4} \le x < \frac{3}{8} \\ 1 & x \ge \frac{3}{8} \end{cases}$$

Determine the following probabilities:

- (a) $P[X \le 1/18]$
- (b) $P[X \le 1/4]$
- (c) $P[X \le 5/16]$
- (d) P[X > 1/4]

(e) $P[X \le 1/2]$

[Montgomery and Runger, 2010, Q3-42] **Solution**:

- (a) $P[X \le 1/18] = F_X(1/18) = 0$ because $\frac{1}{18} < \frac{1}{8}$.
- (b) $P[X \le 1/4] = F_X(1/4) = 0.9$.
- (c) $P[X \le 5/16] = F_X(5/16) = 0.9$ because $\frac{1}{4} < \frac{5}{16} < \frac{3}{8}$.
- (d) $P[X > 1/4] = 1 P[X \le 1/4] = 1 F_X(1/4) = 1 0.9 = 0.1$.
- (e) $P[X \le 1/2] = F_X(1/2) = 1$ because $\frac{1}{2} > \frac{3}{8}$.

Alternatively, we can also derive the pmf first and then calculate the probabilities.