ECS 315: Probability and Random Processes 2016/1 HW 7 - Due: Oct 25, 5 PM

Lecturer: Prapun Suksompong, Ph.D.

Instructions

(a) This assignment has 2 pages.
(b) (1 pt) Write your first name and the last three digit of your student ID on the upperright corner of every submitted page.
(c) (1 pt) For each part, write your explanation/derivation and answer in the space provided.
(d) $(8 \mathrm{pt})$ It is important that you try to solve all non-optional problems.
(e) Late submission will be heavily penalized.

Problem 1. For each description of a random variable X below, indicate whether X is a discrete random variable.
(a) X is the number of websites visited by a randomly chosen software engineer in a day.
(b) X is the number of classes a randomly chosen student is taking.
(c) X is the average height of the passengers on a randomly chosen bus.
(d) A game involves a circular spinner with eight sections labeled with numbers. X is the amount of time the spinner spins before coming to a rest.
(e) X is the thickness of the longest book in a randomly chosen library.
(f) X is the number of keys on a randomly chosen keyboard.
(g) X is the length of a randomly chosen person's arm.

Problem 2. An optical inspection system is to distinguish among different part types. The probability of a correct classification of any part is 0.98 . Suppose that three parts are inspected and that the classifications are independent.
(a) Let the random variable X denote the number of parts that are correctly classified. Determine the probability mass function of X. [Montgomery and Runger, 2010, Q3-20]
(b) Let the random variable Y denote the number of parts that are incorrectly classified. Determine the probability mass function of Y.

Problem 3. Consider the sample space $\Omega=\{-2,-1,0,1,2,3,4\}$. Suppose that $P(A)=$ $|A| /|\Omega|$ for any event $A \subset \Omega$. Define the random variable $X(\omega)=\omega^{2}$. Find the probability mass function of X.

