ECS 315: Probability and Random Processes 2016/1 HW Solution 4 - Due: Sep 20, 5 PM

Lecturer: Prapun Suksompong, Ph.D.

Instructions

(a) This assignment has 6 pages.
(b) (1 pt) Write your first name and the last three digit of your student ID on the upperright corner of every submitted page.
(c) (1 pt) For each part, write your explanation/derivation and answer in the space provided.
(d) (8 pt) It is important that you try to solve all non-optional problems.
(e) Late submission will be heavily penalized.

Problem 1. Let A and B be events for which $P(A), P(B)$, and $P(A \cup B)$ are known. Express the following probabilities in terms of the three known probabilities above.
(a) $P(A \cap B)$
(b) $P\left(A \cap B^{c}\right)$
(c) $P\left(B \cup\left(A \cap B^{c}\right)\right)$
(d) $P\left(A^{c} \cap B^{c}\right)$

Solution:

(a) $P(A \cap B)=P(A)+P(B)-P(A \cup B)$. This property is shown in class.
(b) We have seen ${ }^{1}$ in class that $P\left(A \cap B^{c}\right)=P(A)-P(A \cap B)$. Plugging in the expression for $P(A \cap B)$ from the previous part, we have

$$
P\left(A \cap B^{c}\right)=P(A)-(P(A)+P(B)-P(A \cup B))=P(A \cup B)-P(B) .
$$

[^0]Alternatively, we can start from scratch with the set identity $A \cup B=B \cup\left(A \cap B^{c}\right)$ whose union is a disjoint union. Hence,

$$
P(A \cup B)=P(B)+P\left(A \cap B^{c}\right)
$$

Moving $P(B)$ to the LHS finishes the proof.
(c) $P\left(B \cup\left(A \cap B^{c}\right)\right)=P(A \cup B)$ because $A \cup B=B \cup\left(A \cap B^{c}\right)$.
(d) $P\left(A^{c} \cap B^{c}\right)=1-P(A \cup B)$ because $A^{c} \cap B^{c}=(A \cup B)^{c}$.

Problem 2. Continue from Problem 3 in HW3.
Recall that, there, we consider a random experiment whose sample space is $\{a, b, c, d, e\}$ with probabilities $0.1,0.1,0.2,0.4$, and 0.2 , respectively. Let A denote the event $\{a, b, c\}$, and let B denote the event $\{c, d, e\}$. Find the following probabilities.
(a) $P(A \mid B)$
(b) $P(B \mid A)$
(c) $P\left(B \mid A^{c}\right)$

Solution: In HW2, we have already found

$$
\begin{aligned}
P(A) & =P(\{a, b, c\})=0.1+0.1+0.2=0.4, \\
P(B) & =P(\{c, d, e\})=0.2+0.4+0.2=0.8, \text { and } \\
P(A \cap B) & =P(\{c\})=0.2 .
\end{aligned}
$$

Therefore, by definition,
(a) $P(A \mid B) \equiv \frac{P(A \cap B)}{P(B)}=\frac{0.2}{0.8}=\frac{1}{4}$ and
(b) $P(B \mid A) \equiv \frac{P(B \cap A)}{P(A)}=\frac{P(A \cap B)}{P(A)}=\frac{0.2}{0.4}=\frac{1}{2}$.
(c) DO NOT start with $P\left(B \mid A^{c}\right)=1-P(B \mid A)$. This is not one of the formulas for conditional probabilities. Here, we will have to go back to the definition:

$$
P\left(B \mid A^{c}\right)=\frac{P\left(B \cap A^{c}\right)}{P\left(A^{c}\right)}=\frac{P(\{d, e\})}{P(\{d, e\})}=1 .
$$

Problem 3.

(a) Suppose that $P(A \mid B)=0.4$ and $P(B)=0.5$ Determine the following:
(i) $P(A \cap B)$
(ii) $P\left(A^{c} \cap B\right)$
[Montgomery and Runger, 2010, Q2-105]
(b) Suppose that $P(A \mid B)=0.2, P\left(A \mid B^{c}\right)=0.3$ and $P(B)=0.8$ What is $P(A)$? [Montgomery and Runger, 2010, Q2-106]

Solution:

(a)
(i) By definition, $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$. Therefore,

$$
P(A \cap B)=P(A \mid B) P(B)=0.4 \times 0.5=0.2 .
$$

(ii) $P\left(A^{c} \cap B\right)=P(B \backslash A)=P(B)-P(A \cap B)=0.5-0.2=0.3$.

Alternatively, one can apply the property $P\left(A^{c} \mid B\right)=1-P(A \mid B)$ to get

$$
P\left(A^{c} \cap B\right)=P\left(A^{c} \mid B\right) P(B)=(1-P(A \mid B)) P(B)=(1-0.4) \times 0.5=0.3
$$

(b) Method 1: By definition, $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$. Therefore,

$$
P(A \cap B)=P(A \mid B) P(B)=0.2 \times 0.8=0.16
$$

Next, from $P(B)=0.8$, we know that

$$
P\left(B^{c}\right)=1-P(B)=1-0.8=0.2 .
$$

By definition, $P\left(A \mid B^{c}\right)=\frac{P\left(A \cap B^{c}\right)}{P\left(B^{c}\right)}$. Therefore,

$$
P\left(A \cap B^{c}\right)=P\left(A \mid B^{c}\right) P\left(B^{c}\right)=0.3 \times 0.2=0.06
$$

Hence, $P(A)=P(A \cap B)+P\left(A \cap B^{c}\right)=0.16+0.16=0.22$.
Method 2: By the total probability formula, $P(A)=P(A \mid B) P(B)+P\left(A \mid B^{c}\right) P\left(B^{c}\right)=$ $0.2 \times 0.8+0.3 \times(1-0.8)=0.22$.
Method 3: For those who are not seeking a "smart" way to solve this question, we can try the following:
Note that when we have two events, the sample space is always partitioned into four events: $A \cap B, A^{c} \cap B, A \cap B^{c}$, and $A^{c} \cap B^{c}$. (It might be helpful to draw the Venn
diagram here.) Let's define their probabilities as p_{1}, p_{2}, p_{3}, and p_{4}, respectively. We are given three conditions which can then be turned into three equations. There is also one extra condition that $p_{1}+p_{2}+p_{3}+p_{4}=1$. Therefore, we have four equations with four unknowns. Applying some high-school algebra, we should be able to solve for p_{1}, p_{2}, p_{3}, and p_{4}. With these, we can calculate probability of any event. For example, $P(A)=p_{1}+p_{3}$.

Problem 4. Someone has rolled a fair dice twice. Suppose he tells you that "one of the rolls turned up a face value of six". What is the probability that the other roll turned up a six as well? [Tijms, 2007, Example 8.1, p. 244]

Hint: Note the followings:

- The answer is not $\frac{1}{6}$.
- Although there is no use of the word "give" or "conditioned on" in this question, the probability we seek is a conditional one. We have an extra piece of information because we know that the event "one of the rolls turned up a face value of six" has occurred.
- The question says "one of the rolls" without telling us which roll (the first or the second) it is referring to.

Solution: Let the sample space be the set $\{(i, j) \mid i, j=1, \ldots, 6\}$, where i and j denote the outcomes of the first and second rolls, respectively. They are all equally likely; so each has probability of $1 / 36$. The event of two sixes is given by $A=\{(6,6)\}$ and the event of at least one six is given by $B=(1,6), \ldots,(5,6),(6,6),(6,5), \ldots,(6,1)$. Applying the definition of conditional probability gives

$$
P(A \mid B)=P(A \cap B) / P(B)=\frac{1 / 36}{11 / 36} .
$$

Hence the desired probability is $1 / 11$.

Extra Question

Here is an optional question for those who want more practice.

Problem 5.

(a) Suppose that $P(A)=\frac{1}{2}$ and $P(B)=\frac{2}{3}$. Find the range of possible values for $P(A \cap B)$. Hint: Smaller than the interval [0, 1]. [Capinski and Zastawniak, 2003, Q4.21]
(b) Suppose that $P(A)=\frac{1}{2}$ and $P(B)=\frac{1}{3}$. Find the range of possible values for $P(A \cup B)$. Hint: Smaller than the interval [0,1]. [Capinski and Zastawniak, 2003, Q4.22]

Solution:

(a) We will try to derive general bounds for $P(A \cap B)$.

First, recal L^{2}, from the lecture notes, that " $P(A \cap B)$ can not exceed $P(A)$ and $P(B)$ ":

$$
\begin{equation*}
P(A \cap B) \leq \min \{P(A), P(B)\} \tag{4.1}
\end{equation*}
$$

On the other hand, we know that

$$
\begin{equation*}
P(A \cup B)=P(A)+P(B)-P(A \cap B) \tag{4.2}
\end{equation*}
$$

Now, $P(A \cup B)$ is a probability and hence its value must be between 0 and 1 :

$$
\begin{equation*}
0 \leq P(A \cup B) \leq 1 \tag{4.3}
\end{equation*}
$$

Combining (4.3) with (4.2) gives

$$
\begin{equation*}
P(A)+P(B)-1 \leq P(A \cap B) \leq P(A)+P(B) \tag{4.4}
\end{equation*}
$$

The second inequality in (4.4) is not useful because (4.1) gives a better ${ }^{3}$ bound. So, we will replace the second inequality with (4.1):

$$
\begin{equation*}
P(A)+P(B)-1 \leq P(A \cap B) \leq \min \{P(A), P(B)\} \tag{4.5}
\end{equation*}
$$

Finally, $P(A \cap B)$ is also a probability and hence it must be between 0 and 1 :

$$
\begin{equation*}
0 \leq P(A \cap B) \leq 1 \tag{4.6}
\end{equation*}
$$

Combining (4.6) and (4.5), we have

$$
\max \{(P(A)+P(B)-1), 0\} \leq P(A \cap B) \leq \min \{P(A), P(B), 1\} .
$$

Note that number one at the end of the expression above is not necessary because the two probabilities under minimization can not exceed 1 themselves. In conclusion,

$$
\max \{(P(A)+P(B)-1), 0\} \leq P(A \cap B) \leq \min \{P(A), P(B)\}
$$

Plugging in the value $P(A)=\frac{1}{2}$ and $P(B)=\frac{2}{3}$ gives the range $\left[\frac{1}{6}, \frac{1}{2}\right]$.
Note that the upper-bound can be obtained by constructing an example which has $A \subset B$. The lower-bound can be obtained by considering an example where $A \cup B=\Omega$.

[^1](b) We will try to derive general bounds for $P(A \cup B)$.

By monotonicity, because both A and B are subset of $A \cup B$, we must have

$$
P(A \cup B) \geq \max \{P(A), P(B)\}
$$

On the other hand, we know, from the finite sub-additivity property, that

$$
P(A \cup B) \leq P(A)+P(B) .
$$

Therefore,

$$
\max \{P(A), P(B)\} \leq P(A \cup B) \leq P(A)+P(B)
$$

Being a probability, $P(A \cup B)$ must be between 0 and 1. Hence,

$$
\max \{P(A), P(B), 0\} \leq P(A \cup B) \leq \min \{(P(A)+P(B)), 1\}
$$

Note that number 0 is not needed in the aximization because the two probabilities involved are automatically ≥ 0 themselves.
In conclusion,

$$
\max \{P(A), P(B)\} \leq P(A \cup B) \leq \min \{(P(A)+P(B)), 1\}
$$

Plugging in the value $P(A)=\frac{1}{2}$ and $P(B)=\frac{1}{3}$, we have

$$
P(A \cup B) \in\left[\frac{1}{2}, \frac{5}{6}\right]
$$

The upper-bound can be obtained by making $A \perp B$. The lower-bound is achieved when $B \subset A$.

[^0]: ${ }^{1}$ This shows up when we try to derive the formula $P(A \cup B)=P(A)+P(B)-P(A \cap B)$. The key idea is that the set A can be expressed as a disjoint union between $A \cap B$ and $A \cap B^{c}$. Therefore, by finite additivity, $P(A)=P(A \cap B)+P\left(A \cap B^{c}\right)$. It is easier to visualize this via the Venn diagram.

[^1]: ${ }^{2}$ Again, to see this, note that $A \cap B \subset A$ and $A \cap B \subset B$. Hence, we know that $P(A \cap B) \leq P(A)$ and $P(A \cap B) \leq P(B)$.
 ${ }^{3}$ When we already know that a number is less than 3 , learning that it is less than 5 does not give us any new information.

