
ECS 315: Probability and Random Processes 2016/1

HW Solution 3 — Due: Sep 13, 5 PM

Lecturer: Prapun Suksompong, Ph.D.

Instructions

(a) This assignment has 4 pages.

(b) (1 pt) Write your first name and the last three digit of your student ID on the upper-
right corner of every submitted page.

(c) (1 pt) For each part, write your explanation/derivation and answer in the space pro-
vided.

(d) (8 pt) It is important that you try to solve all problems.

(e) Late submission will be heavily penalized.

Problem 1. (Classical Probability and Combinatorics) We all know that the chance
of a head (H) or tail (T) coming down after a fair coin is tossed are fifty-fifty. If a fair coin
is tossed ten times, then intuition says that five heads are likely to turn up.

Calculate the probability of getting exactly five heads (and hence exactly five tails).
Solution : There are 210 possible outcomes for ten coin tosses. (For each toss, there is

two possibilities, H or T). Only
(
10
5

)
among these outcomes have exactly heads and five tails.

(Choose 5 positions from 10 position for H. Then, the rest of the positions are automatically
T.) The probability of have exactly 5 H and 5 T is(

10
5

)
210
≈ 0.246.

Note that five heads and five tails will turn up more frequently than any other single
combination (one head, nine tails for example) but the sum of all the other possibilities is
much greater than the single 5 H, 5 T combination.

Problem 2. IfA, B, and C are disjoint events with P (A) = 0.2, P (B) = 0.3 and P (C) = 0.4,
determine the following probabilities:

(a) P (A ∪B ∪ C)

(b) P (A ∩B ∩ C)

(c) P (A ∩B)
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(d) P ((A ∪B) ∩ C)

(e) P (Ac ∩Bc ∩ Cc)

[Montgomery and Runger, 2010, Q2-75]
Solution :

(a) BecauseA, B, and C are disjoint, P (A∪B∪C) = P (A)+P (B)+P (C) = 0.3+0.2+0.4 =
0.9.

(b) Because A, B, and C are disjoint, A∩B∩C = ∅ and hence P (A∩B∩C) = P (∅) = 0 .

(c) Because A and B are disjoint, A ∩B = ∅ and hence P (A ∩B) = P (∅) = 0 .

(d) (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C). By the disjointness among A, B, and C, we have
(A ∩ C) ∪ (B ∩ C) = ∅ ∪ ∅ = ∅. Therefore, P ((A ∪B) ∩ C) = P (∅) = 0 .

(e) From Ac ∩ Bc ∩ Cc = (A ∪ B ∪ C)c, we have P (Ac ∩ Bc ∩ Cc) = 1− P (A ∪ B ∪ C) =
1− 0.9 = 0.1.

Problem 3. The sample space of a random experiment is {a, b, c, d, e} with probabilities
0.1, 0.1, 0.2, 0.4, and 0.2, respectively. Let A denote the event {a, b, c}, and let B denote
the event {c, d, e}. Determine the following:

(a) P (A)

(b) P (B)

(c) P (Ac)

(d) P (A ∪B)

(e) P (A ∩B)

[Montgomery and Runger, 2010, Q2-55]
Solution :

(a) Recall that the probability of a finite or countable event equals the sum of the proba-
bilities of the outcomes in the event. Therefore,

P (A) = P ({a, b, c}) = P ({a}) + P ({b}) + P ({c})
= 0.1 + 0.1 + 0.2 = 0.4.
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(b) Again, the probability of a finite or countable event equals the sum of the probabilities
of the outcomes in the event. Thus,

P (B) = P ({c, d, e}) = P ({c}) + P ({d}) + P ({e})
= 0.2 + 0.4 + 0.2 = 0.8.

(c) Applying the complement rule, we have P (Ac) = 1− P (A) = 1− 0.4 = 0.6.

(d) Note that A ∪B = Ω. Hence, P (A ∪B) = P (Ω) = 1.

(e) P (A ∩B) = P ({c}) = 0.2.

Problem 4. Binomial theorem : For any positive integer n, we know that

(x+ y)n =
n∑

r=0

(
n

r

)
xryn−r. (3.1)

(a) What is the coefficient of x12y13 in the expansion of (x+ y)25?

(b) What is the coefficient of x12y13 in the expansion of (2x− 3y)25?

(c) Use the binomial theorem (3.3) to evaluate
n∑

k=0

(−1)k
(
n
k

)
.

Solution :

(a) The coefficient of xryn−r is
(
n
r

)
. Here, n = 25 and r = 12. So, the coefficient is(

25
12

)
= 5, 200, 300 .

(b) We start from the expansion of (a+ b)n. Then we set a = 2x and b = −3y:

(a+ b)n =
n∑

r=0

(
n

r

)
arbn−r =

n∑
r=0

(
n

r

)
(2x)r(−3y)n−r = .

n∑
r=0

(
n

r

)
2r(−3)n−rxryn−r.

(3.2)
Therefore, the coefficient of xryn−r is

(
n
r

)
2r(−3)n−r. Here, n = 25 and r = 12. So, the

coefficient is
(
25
12

)
212(−3)13 = − 25!

12!13!
212313 = −33959763545702400 .

(c) From (3.3), set x = −1 and y = 1, then we have
n∑

k=0

(−1)k
(
n
k

)
= (−1 + 1)n = 0 .

Extra Questions
Here are some optional questions for those who want more practice.
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Problem 5. An Even Split at Coin Tossing : Let pn be the probability of getting
exactly n heads (and hence exactly n tails) when a fair coin is tossed 2n times.

(a) Find pn.

(b) Sometimes, to work theoretically with large factorials, we use Stirling’s Formula:

n! ≈
√

2πnnne−n =
(√

2πe
)
e(n+

1
2) ln(n

e ). (3.3)

Approximate pn using Stirling’s Formula.

(c) Find lim
n→∞

pn.

Solution : Note that we have worked on a particular case (n = 5) of this problem earlier.

(a) Use the same solution as Problem 1; change 5 to n and 10 to 2n, we have

pn =

(
2n
n

)
22n

.

(b) By Stirling’s Formula, we have(
2n

n

)
=

(2n)!

n!n!
≈
√

2π2n(2n)2ne−2n(√
2πnnne−n

)2 =
4n

√
πn

.

Hence,

pn ≈
1√
πn

. (3.4)

[Mosteller, Fifty Challenging Problems in Probability with Solutions, 1987, Problem 18]

See Figure ?? for comparison of pn and its approximation via Stirling’s formula.

(c) From (??), lim
n→∞

pn = 0 . A more rigorous proof of this limit would use the bounds

4n

√
4n
≤
(

2n

n

)
≤ 4n

√
3n+ 1

.

Problem 6. Binomial theorem : For any positive integer n, we know that

(x+ y)n =
n∑

r=0

(
n

r

)
xryn−r. (3.5)
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Figure 3.1: Comparison of pn and its approximation via Stirling’s formula

(a) Use the binomial theorem (3.3) to simplify the following sums

(i)
n∑

r=0
r even

(
n
r

)
xr(1− x)n−r

(ii)
n∑

r=0
r odd

(
n
r

)
xr(1− x)n−r

(b) If we differentiate (3.3) with respect to x and then multiply by x, we have

n∑
r=0

r

(
n

r

)
xryn−r = nx(x+ y)n−1.

Use similar technique to simplify the sum
∑n

r=0 r
2
(
n
r

)
xryn−r.

Solution :

(a) To deal with the sum involving only the even terms (or only the odd terms), we first
use (3.3) to expand (x+y)n and (x+(−y))n. When we add the expanded results, only
the even terms in the sum are left. Similarly, when we find the difference between the
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two expanded results, only the the odd terms are left. More specifically,

n∑
r=0

r even

(
n

r

)
xryn−r =

1

2
((x+ y)n + (y − x)n) , and

n∑
r=0
r odd

(
n

r

)
xryn−r =

1

2
((x+ y)n − (y − x)n) .

If x+ y = 1, then

n∑
r=0

r even

(
n

r

)
xryn−r =

1

2
(1 + (1− 2x)n) , and (3.6a)

n∑
r=0
r odd

(
n

r

)
xryn−r =

1

2
(1− (1− 2x)n) . (3.6b)

(b)
∑n

r=0 r
2
(
n
r

)
xryn−r = nx

(
x(n− 1)(x+ y)n−2 + (x+ y)n−1

)
.

Problem 7. (Classical Probability and Combinatorics) Suppose n integers are chosen
with replacement (that is, the same integer could be chosen repeatedly) at random from
{1, 2, 3, . . . , N}. Calculate the probability that the chosen numbers arise according to some
non-decreasing sequence.

Solution : There are Nn possible sequences. (This is ordered sampling with replace-
ment.) To find the probability, we need to count the number of non-decreasing sequences
among these Nn possible sequences. It takes some thought to realize that this is exactly the
counting problem that we called “unordered sampling with replacement”. In which case, we

can conclude that the probability is

(
n+N−1

n

)
Nn

. The “with replacement” part should be clear

from the question statement. The “unordered” part needs some more thought.
To see this, let’s look back at how we turn the “ordered sampling without replacement”

into “unordered sampling without replacement”. Recall that there are (N)n distinct samples
for “ordered sampling without replacement”. When we switch to the “unordered” case, we
see that many of the original samples from the “ordered sampling without replacement” are
regarded as the same in the “unordered” case. In fact, we can form “groups” of samples
whose members are regarded as the same in the “unordered” case. We can then count the
number of groups. In class, we found that the size of any individual group can be calculated
easily from permuting the elements in a sample and hence there are n! members in each
group. This leads us to conclude that there are (N)n/n! =

(
N
n

)
groups.
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We are in a similar situation when we want to turn the “ordered sampling with replace-
ment” into “unordered sampling with replacement”. We first start with Nn distinct samples
from “ordered sampling with replacement”. Now, we again separate these samples into
groups. Let’s consider an example where n = 3. Then sequences “1 1 2”, “1 2 1”, and “2 1
1” are put together in the same group in the “unordered” case. Note that the size of this
group is 3. The sequences “1 2 3”, “1 3 2”, “2 1 3”, “2 3 1”, “3 1 2”, and “3 2 1” are in
another group. Note that the size of this group is 6. Therefore, the group sizes are not the
same and hence we can not find the number of groups by Nn/(group size) as in the sampling
without replacement discussed in the previous paragraph. To count the number of groups,
we look at the sequences from another perspective. We see that the “unordered” case, the
only information the characterizes each group is “how many of each number there are”. This
is why we can match the number of groups to the number of nonnegative-integer solutions to
the equation x1 + x2 + · · ·+ xN = n as discussed in class. Finally, note that for each group,
we have only one possible nondecreasing sequence. So, the number of possible nondecreasing
sequence is the same as the number of groups.

If you think about the explanation above, you may realize that, by requiring the “order”
on the sequence, the counting problem become “unordered sampling”.

Here, we present two direct methods that leads to the same answer.
Method 1 : Because the sequence is non-decreasing, the number of times that each of the

integers {1, 2, . . . , N} shows up in the sequence is the only information that characterizes each
sequence. Let xi be the number of times that number i shows up in the sequence. The number
of sequences is then the same as the number of solution to the equation x1+x2+ · · ·+xN = n
where the xi are all non-negative integers. We have seen in class that the number of solutions
is
(
n+N−1

n

)
.

Method 2 : [DasGupta, 2010, Example 1.14, p. 12] Consider the following construction
of such non-decreasing sequence. Start with n stars and N − 1 bars. There are

(
n+N−1

n

)
arrangements of these. For example, when N = 5 and n = 2, one arrangement is | ∗ || ∗ |.
Now, add spaces between these bars and stars including before the first one and after the
last one. For our earlier example, we have | ∗ | | ∗ | . Now, put number 1 in the leftmost
space. After this position, the next space holds the same value as the previous on if you
pass a ∗. On the other hand, if you pass a | then the value increases by 1. Note that
because there are N − 1 bars, the last space always gets the value N . What you now have
is a sequence of n + N numbers with bars between consecutive distinct numbers and stars
between consecutive equal numbers. For example, our example would gives 1|2 ∗ 2|3|4 ∗ 4|5.
Note that this gives a non-decreasing sequence of n + N numbers. The corresponding non-
decreasing sequence of n numbers for this arrangement of stars and bars is (2,4); that is we
only take the numbers to the right of the stars. Because there are n stars, our sequence will
have n numbers. It will be non-decreasing because it is a sub-sequence of the non-decreasing
n + N sequence. This shows that any arrangement of n stars and N − 1 bars gives one
nondecreasing sequence of n numbers.

3-7



ECS 315 HW Solution 3 — Due: Sep 13, 5 PM 2016/1

Conversely, we can take any nondecreasing sequence of n numbers and combine it with
the full set of numbers {1, 2, 3, . . . , N} to form a set of n+N numbers. Now rearrange these
numbers in a nondecreasing order. Put a bar between consecutive distinct numbers in this
set and a star between consecutive equal numbers in this set. Note that the number to the
right of each star is an element of the original n-number sequence. This shows that any
nondecreasing sequence of n numbers corresponds to an arrangement of n stars and N − 1
bars.

Combining the two paragraphs above, we now know that the number of non-decreasing
sequences is the same as the number of arrangement of n stars and N − 1 bars, which is(
n+N−1

n

)
.

Remark : There is also a method— which will not be discussed here, but can be inferred
by finding the pattern of the sums that lead to the number of non-decreasing sequences
as we increase the value of n— that would interestingly give the number of non-decreasing
sequences as

N∑
kn−1=1

· · ·
k3∑

k2=1

k2∑
k1=1

k1.

This sum can be simplified into
(
n+N−1

n

)
by the “parallel summation formula” which is

well-known but we didn’t discuss in class because this is not a class on combinatorics.
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