HW 3 — Due: Sep 13, 5 PM

Lecturer: Prapun Suksompong, Ph.D.

Instructions

- (a) This assignment has 4 pages.
- (b) (1 pt) Write your first name and the last three digit of your student ID on the upperright corner of *every* submitted page.
- (c) (1 pt) For each part, write your explanation/derivation and answer in the space provided.
- (d) (8 pt) It is important that you try to solve all problems.
- (e) Late submission will be heavily penalized.

Problem 1. (Classical Probability and Combinatorics) We all know that the chance of a head (H) or tail (T) coming down after a fair coin is tossed are fifty-fifty. If a fair coin is tossed ten times, then intuition says that five heads are likely to turn up.

Calculate the probability of getting exactly five heads (and hence exactly five tails).

Problem 2. If A, B, and C are disjoint events with P(A) = 0.2, P(B) = 0.3 and P(C) = 0.4, determine the following probabilities:

- (a) $P(A \cup B \cup C)$
- (b) $P(A \cap B \cap C)$
- (c) $P(A \cap B)$

2016/1

- (d) $P((A \cup B) \cap C)$
- (e) $P(A^c \cap B^c \cap C^c)$

[Montgomery and Runger, 2010, Q2-75]

Problem 3. The sample space of a random experiment is $\{a, b, c, d, e\}$ with probabilities 0.1, 0.1, 0.2, 0.4, and 0.2, respectively. Let A denote the event $\{a, b, c\}$, and let B denote the event $\{c, d, e\}$. Determine the following:

- (a) P(A)
- (b) P(B)
- (c) $P(A^c)$
- (d) $P(A \cup B)$
- (e) $P(A \cap B)$

[Montgomery and Runger, 2010, Q2-55]

Problem 4. *Binomial theorem*: For any positive integer *n*, we know that

$$(x+y)^{n} = \sum_{r=0}^{n} \binom{n}{r} x^{r} y^{n-r}.$$
(3.1)

(a) What is the coefficient of $x^{12}y^{13}$ in the expansion of $(x+y)^{25}$?

(b) What is the coefficient of $x^{12}y^{13}$ in the expansion of $(2x - 3y)^{25}$?

(c) Use the binomial theorem (3.3) to evaluate $\sum_{k=0}^{n} (-1)^k {n \choose k}$.

Don't forget to write your first name and the last three digit of your student ID on the upper-right corner of *every* submitted page.

Extra Questions

Here are some optional questions for those who want more practice.

Problem 5. An Even Split at Coin Tossing: Let p_n be the probability of getting exactly n heads (and hence exactly n tails) when a fair coin is tossed 2n times.

(a) Find p_n .

(b) Sometimes, to work theoretically with large factorials, we use Stirling's Formula:

$$n! \approx \sqrt{2\pi n} n^n e^{-n} = \left(\sqrt{2\pi e}\right) e^{\left(n + \frac{1}{2}\right) \ln\left(\frac{n}{e}\right)}.$$
(3.2)

Approximate p_n using Stirling's Formula.

(c) Find $\lim_{n \to \infty} p_n$.

Problem 6. *Binomial theorem*: For any positive integer *n*, we know that

$$(x+y)^{n} = \sum_{r=0}^{n} \binom{n}{r} x^{r} y^{n-r}.$$
(3.3)

(a) Use the binomial theorem (3.3) to simplify the following sums

(i)
$$\sum_{\substack{r=0\\r \text{ even}}}^{n} {n \choose r} x^r (1-x)^{n-r}$$

(ii) $\sum_{\substack{r=0\\r \text{ odd}}}^{n} {n \choose r} x^r (1-x)^{n-r}$

(b) If we differentiate (3.3) with respect to x and then multiply by x, we have

$$\sum_{r=0}^{n} r\binom{n}{r} x^{r} y^{n-r} = nx(x+y)^{n-1}.$$

Use similar technique to simplify the sum $\sum_{r=0}^{n} r^2 {n \choose r} x^r y^{n-r}$.

Problem 7. (Classical Probability and Combinatorics) Suppose n integers are chosen with replacement (that is, the same integer could be chosen repeatedly) at random from $\{1, 2, 3, ..., N\}$. Calculate the probability that the chosen numbers arise according to some non-decreasing sequence.