ECS 315: Probability and Random Processes HW 14 — Due: Not Due Lecturer: Prapun Suksompong, Ph.D.

Problem 1. Let a continuous random variable X denote the current measured in a thin copper wire in milliamperes. Assume that the probability density function of X is

$$f_X(x) = \begin{cases} 5, & 4.9 \le x \le 5.1, \\ 0, & \text{otherwise.} \end{cases}$$

(a) Find the probability that a current measurement is less than 5 milliamperes.

(b) Find and plot the cumulative distribution function of the random variable X.

(c) Find the expected value of X.

(d) Find the variance and the standard deviation of X.

2016/1

(e) Find the expected value of power when the resistance is 100 ohms?

Problem 2. The time until a chemical reaction is complete (in milliseconds) is approximated by the cumulative distribution function

$$F_X(x) = \begin{cases} 1 - e^{-0.01x}, & x \ge 0, \\ 0, & \text{otherwise.} \end{cases}$$

(a) Determine the probability density function of X.

(b) What proportion of reactions is complete within 200 milliseconds?

Problem 3. Let $X \sim \mathcal{E}(5)$ and Y = 2/X.

(a) Check that Y is still a continuous random variable.

(b) Find $F_Y(y)$.

(c) Find $f_Y(y)$.

(d) (optional) Find $\mathbb{E}Y$. Hint: Because $\frac{d}{dy}e^{-\frac{10}{y}} = \frac{10}{y^2}e^{-\frac{10}{y}} > 0$ for $y \neq 0$. We know that

 $e^{-\frac{10}{y}}$ is an increasing function on our range of integration. In particular, consider $y > 10/\ln(2)$. Then, $e^{-\frac{10}{y}} > \frac{1}{2}$. Hence,

$$\int_{0}^{\infty} \frac{10}{y} e^{-\frac{10}{y}} dy > \int_{10/\ln 2}^{\infty} \frac{10}{y} e^{-\frac{10}{y}} dy > \int_{10/\ln 2}^{\infty} \frac{10}{y} \frac{1}{2} dy = \int_{10/\ln 2}^{\infty} \frac{5}{y} dy.$$

Remark: To be technically correct, we should be a little more careful when writing $Y = \frac{2}{X}$ because it is undefined when X = 0. Of course, this happens with 0 probability; so it won't create any serious problem. However, to avoid the problem, we may define Y by

$$Y = \begin{cases} 2/X, & X \neq 0, \\ 0, & X = 0. \end{cases}$$
(14.1)

Problem 4. In wireless communications systems, fading is sometimes modeled by **lognor**mal random variables. We say that a positive random variable Y is lognormal if $\ln Y$ is a normal random variable (say, with expected value m and variance σ^2).

Hint: First, recall that the ln is the natural log function (log base e). Let $X = \ln Y$. Then, because Y is lognormal, we know that $X \sim \mathcal{N}(m, \sigma^2)$. Next, write Y as a function of X. (a) Check that Y is still a continuous random variable.

(b) Find the pdf of Y.

Problem 5. The input X and output Y of a system subject to random perturbations are described probabilistically by the following joint pmf matrix:

xY	2	4	5
1	0.02	0.10	0.08 0.40
3	0.08	0.32	0.40

(a) Evaluate the following quantities:

- (i) The marginal pmf $p_X(x)$
- (ii) The marginal pmf $p_Y(y)$

(iii) $\mathbb{E}X$

(iv) $\operatorname{Var} X$

(v) $\mathbb{E}Y$

(vi) $\operatorname{Var} Y$

(vii) P[XY < 6]

(viii) P[X = Y]

(ix) $\mathbb{E}[XY]$

(x) $\mathbb{E}[(X-3)(Y-2)]$

(xi)
$$\mathbb{E}[X(Y^3 - 11Y^2 + 38Y)]$$

(xii) $\operatorname{Cov}[X, Y]$

- (xiii) $\rho_{X,Y}$
- (b) Find $\rho_{X,X}$
- (c) Calculate the following quantities using the values of Var X, Cov [X, Y], and $\rho_{X,Y}$ that you got earlier.
 - (i) Cov[3X+4, 6Y-7]
 - (ii) $\rho_{3X+4,6Y-7}$
 - (iii) Cov [X, 6X 7]

(iv) $\rho_{X,6X-7}$

Problem 6. Suppose $X \sim \text{binomial}(5, 1/3)$, $Y \sim \text{binomial}(7, 4/5)$, and $X \perp Y$. Evaluate the following quantities.

- (a) $\mathbb{E}[(X-3)(Y-2)]$
- (b) $\operatorname{Cov}[X, Y]$
- (c) $\rho_{X,Y}$

Extra Questions

Here are some extra questions for those who want more practice.

Problem 7. Consider a random variable X whose pdf is given by

$$f_X(x) = \begin{cases} cx^2, & x \in (1,2), \\ 0, & \text{otherwise.} \end{cases}$$

Let Y = 4 |X - 1.5|.

- (a) Find $\mathbb{E}Y$.
- (b) Find $f_Y(y)$.

Problem 8. A webpage server can handle r requests per day. Find the probability that the server gets more than r requests at least once in n days. Assume that the number of requests on day i is $X_i \sim \mathcal{P}(\alpha)$ and that X_1, \ldots, X_n are independent.

Problem 9. Suppose $X \sim \text{binomial}(5, 1/3), Y \sim \text{binomial}(7, 4/5), \text{ and } X \perp Y$.

(a) A vector describing the pmf of X can be created by the MATLAB expression:

x = 0:5; pX = binopdf(x,5,1/3).

What is the expression that would give pY, a corresponding vector describing the pmf of Y?

- (b) Use pX and pY from part (a), how can you create the joint pmf matrix in MATLAB? Do not use "for-loop", "while-loop", "if statement". Hint: Multiply them in an appropriate orientation.
- (c) Use MATLAB to evaluate the following quantities. Again, do not use "for-loop", "while-loop", "if statement".
 - (i) $\mathbb{E}X$
 - (ii) P[X = Y]
 - (iii) P[XY < 6]

Problem 10. Suppose Var X = 5. Find Cov [X, X] and $\rho_{X,X}$.

Problem 11. Suppose we know that $\sigma_X = \frac{\sqrt{21}}{10}$, $\sigma_Y = \frac{4\sqrt{6}}{5}$, $\rho_{X,Y} = -\frac{1}{\sqrt{126}}$.

- (a) Find $\operatorname{Var}[X+Y]$.
- (b) Find $\mathbb{E}[(Y 3X + 5)^2]$. Assume $\mathbb{E}[Y 3X + 5] = 1$.

Problem 12. The input X and output Y of a system subject to random perturbations are described probabilistically by the joint pmf $p_{X,Y}(x,y)$, where x = 1, 2, 3 and y = 1, 2, 3, 4, 5. Let P denote the joint pmf matrix whose i, j entry is $p_{X,Y}(i, j)$, and suppose that

$$P = \frac{1}{71} \begin{bmatrix} 7 & 2 & 8 & 5 & 4 \\ 4 & 2 & 5 & 5 & 9 \\ 2 & 4 & 8 & 5 & 1 \end{bmatrix}$$

- (a) Find the marginal pmfs $p_X(x)$ and $p_Y(y)$.
- (b) Find $\mathbb{E}X$
- (c) Find $\mathbb{E}Y$
- (d) Find $\operatorname{Var} X$
- (e) Find $\operatorname{Var} Y$