ECS 315: Probability and Random Processes
HW 12 - Due: November 29,5 PM
Lecturer: Prapun Suksompong, Ph.D.

Instructions

(a) This assignment has 4 pages.
(b) (1 pt) Write your first name and the last three digit of your student ID on the upperright corner of every submitted sheet.
(c) (1 pt) For each part, write your explanation/derivation and answer in the space provided.
(d) (8 pt) It is important that you try to solve all non-optional problems.
(e) Late submission will be heavily penalized.

Problem 1 (Yates and Goodman, 2005, Q3.3.4). The pdf of random variable Y is

$$
f_{Y}(y)= \begin{cases}y / 2 & 0 \leq y<2 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Find $\mathbb{E}[Y]$.
(b) Find $\operatorname{Var} Y$.

Problem 2 (Yates and Goodman, 2005, Q3.3.6). The cdf of random variable V is

$$
F_{V}(v)= \begin{cases}0 & v<-5 \\ (v+5)^{2} / 144, & -5 \leq v<7 \\ 1 & v \geq 7\end{cases}
$$

(a) What is $f_{V}(v)$?
(b) What is $\mathbb{E}[V]$?
(c) What is $\operatorname{Var}[V]$?
(d) What is $\mathbb{E}\left[V^{3}\right]$?

Problem 3 (Yates and Goodman, 2005, Q3.4.5). X is a continuous uniform RV on the interval $(-5,5)$.
(a) What is its pdf $f_{X}(x)$?
(b) What is its cdf $F_{X}(x)$?
(c) What is $\mathbb{E}[X]$?
(d) What is $\mathbb{E}\left[X^{5}\right]$?
(e) What is $\mathbb{E}\left[e^{X}\right]$?

Problem 4 (Randomly Phased Sinusoid). Suppose Θ is a uniform random variable on the interval ($0,2 \pi$).
(a) Consider another random variable X defined by

$$
X=5 \cos (7 t+\Theta)
$$

where t is some constant. Find $\mathbb{E}[X]$.
(b) Consider another random variable Y defined by

$$
Y=5 \cos \left(7 t_{1}+\Theta\right) \times 5 \cos \left(7 t_{2}+\Theta\right)
$$

where t_{1} and t_{2} are some constants. Find $\mathbb{E}[Y]$.

Don't forget to write your first name and the last three digit of your student ID on the upper-right corner of each submitted sheet.

Extra Question

Here is an optional question for those who want more practice.
Problem 5. Let X be a uniform random variable on the interval $[0,1]$. Set

$$
A=\left[0, \frac{1}{2}\right), \quad B=\left[0, \frac{1}{4}\right) \cup\left[\frac{1}{2}, \frac{3}{4}\right), \quad \text { and } C=\left[0, \frac{1}{8}\right) \cup\left[\frac{1}{4}, \frac{3}{8}\right) \cup\left[\frac{1}{2}, \frac{5}{8}\right) \cup\left[\frac{3}{4}, \frac{7}{8}\right) .
$$

Are the events $[X \in A],[X \in B]$, and $[X \in C]$ independent?

