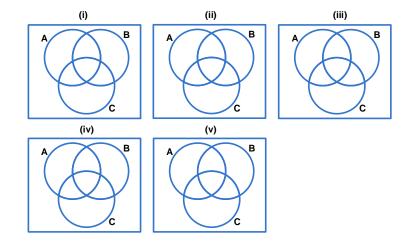
Lecturer: Prapun Suksompong, Ph.D.

Instructions

(a) (1 pt) This assignment has three pages. Do not staple or use paper clip. Your submitted work will be scanned using automatic document feeder.

HW 1 — Due: Aug 30, 5 PM


- (b) (2 pt) Write your first name and the last three digit of your student ID on the upperright corner of *every* submitted page.
- (c) (7 pt) It is important that you try to solve all problems. For each part, write your explanation/derivation and answer in the space provided.

The extra questions at the end are optional.

(d) Late submission will be heavily penalized.

Problem 1. (Set Theory) For this problem, only answers are needed; you don't have to describe your solution.

(a) In the Venn diagrams below,

shade the region that corresponds to the following events:

- (i) A^c
- (ii) $A \cap B$
- (iii) $(A \cap B) \cup C$
- (iv) $(B \cup C)^c$
- (v) $(A \cap B)^c \cup C$

[Montgomery and Runger, 2010, Q2-19]

- (b) Let $\Omega = \{0, 1, 2, 3, 4, 5, 6, 7\}$, and put $A = \{1, 2, 3, 4\}$, $B = \{3, 4, 5, 6\}$, and $C = \{5, 6\}$. Find
 - (i) $A \cup B$
 - (ii) $A \cap B$
 - (iii) $A \cap C$
 - (iv) A^c
 - (v) $B \setminus A$

Problem 2. For this problem, only answers are needed; you don't have to provide explanation.

For each of the sets provided in the first column of the table below, indicate (by putting a Y(es) or an N(o) in the appropriate cells of the table) whether it is "finite", "infinite", "countable", "countably infinite", "uncountable".

Sets	Finite	Infinite	Countable	Countably Infinite	Uncountable
{1}					
$\{1,2\}$					
[1,2]					
$[1,2] \cup [-1,0]$					
$\{1, 2, 3, 4\}$					
the power set of					
$ \begin{array}{c} \{1,2,3,4\} \\ \hline \text{the set of all real} \end{array} $					
numbers the set of all real-					
valued x satisfy-					
$\frac{\log \cos x = 0}{\text{the set of all in-}}$					
the set of all in-					
tegers					
$(-\infty,0]$					
$(-\infty,0]\cap[0,+\infty)$					

Problem 3. Each of the possible five outcomes of a random experiment is equally likely. The sample space is $\{a, b, c, d, e\}$. Let A denote the event $\{a, b\}$, and let B denote the event $\{c, d, e\}$. Determine the following:

- (a) P(A)
- (b) P(B)
- (c) $P(A^c)$
- (d) $P(A \cup B)$
- (e) $P(A \cap B)$

[Montgomery and Runger, 2010, Q2-54]

Don't forget to write your first name and the last three digit of your student ID on the upper-right corner of *every* submitted page.