
ECS 315: Probability and Random Processes 2014/1

HW Solution 1 — Due: Aug 28

Lecturer: Prapun Suksompong, Ph.D.

Instructions

(a) ONE part of a question will be graded (5 pt). Of course, you do not know which part
will be selected; so you should work on all of them.

(b) It is important that you try to solve all problems. (5 pt)
The extra questions at the end are optional.

(c) Late submission will be heavily penalized.

(d) Write down all the steps that you have done to obtain your answers. You may not get
full credit even when your answer is correct without showing how you get your answer.

Problem 1. (Set Theory)

(a) Three events are shown on the Venn diagram in the following figure:

28 CHAPTER 2 PROBABILITY

EXERCISES FOR SECTION 2-1

Provide a reasonable description of the sample space for each
of the random experiments in Exercises 2-1 to 2-17. There can
be more than one acceptable interpretation of each experiment.
Describe any assumptions you make.

2-1. Each of three machined parts is classified as either
above or below the target specification for the part.

2-2. Each of four transmitted bits is classified as either in
error or not in error.

2-3. In the final inspection of electronic power supplies, 
either units pass or three types of nonconformities might occur:
functional, minor, or cosmetic. Three units are inspected.

2-4. The number of hits (views) is recorded at a high-volume
Web site in a day.

2-5. Each of 24 Web sites is classified as containing or not
containing banner ads.

2-6. An ammeter that displays three digits is used to mea-
sure current in milliamperes.

2-7. A scale that displays two decimal places is used to
measure material feeds in a chemical plant in tons.

2-8. The following two questions appear on an employee
survey questionnaire. Each answer is chosen from the five-
point scale 1 (never), 2, 3, 4, 5 (always).

Is the corporation willing to listen to and fairly evaluate
new ideas?

How often are my coworkers important in my overall job
performance?

2-9. The concentration of ozone to the nearest part per billion.

2-10. The time until a service transaction is requested of a
computer to the nearest millisecond.

2-11. The pH reading of a water sample to the nearest tenth
of a unit.

2-12. The voids in a ferrite slab are classified as small,
medium, or large. The number of voids in each category is
measured by an optical inspection of a sample.

2-13. The time of a chemical reaction is recorded to the
nearest millisecond.

2-14. An order for an automobile can specify either an
automatic or a standard transmission, either with or without
air-conditioning, and any one of the four colors red, blue, black,
or white. Describe the set of possible orders for this experiment.

2-15. A sampled injection-molded part could have been
produced in either one of two presses and in any one of the
eight cavities in each press.

2-16. An order for a computer system can specify memory
of 4, 8, or 12 gigabytes, and disk storage of 200, 300, or 400
gigabytes. Describe the set of possible orders.

2-17. Calls are repeatedly placed to a busy phone line until
a connection is achieved.

2-18. In a magnetic storage device, three attempts are made
to read data before an error recovery procedure that reposi-
tions the magnetic head is used. The error recovery procedure
attempts three repositionings before an “abort’’ message is
sent to the operator. Let

s denote the success of a read operation

f denote the failure of a read operation

F denote the failure of an error recovery procedure

S denote the success of an error recovery procedure

A denote an abort message sent to the operator.

Describe the sample space of this experiment with a tree
diagram.

2-19. Three events are shown on the Venn diagram in the
following figure:

Reproduce the figure and shade the region that corresponds to
each of the following events.
(a) (b) (c)
(d) (e)

2-20. Three events are shown on the Venn diagram in the
following figure:

Reproduce the figure and shade the region that corresponds to
each of the following events.
(a) (b)
(c) (d)
(e)

2-21. A digital scale is used that provides weights to the
nearest gram.
(a) What is the sample space for this experiment?

1A ¨ B2 ¿ ´ C
1B ´ C2 ¿1A ¨ B2 ´ C
1A ¨ B2 ´ 1A ¨ B¿ 2A¿

A B

C

1A ¨ B2 ¿ ´ C1B ´ C2 ¿
1A ¨ B2 ´ CA ¨ BA¿

A B

C
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Reproduce the figure and shade the region that corresponds to each of the following
events.

(i) Ac

(ii) A ∩B
(iii) (A ∩B) ∪ C
(iv) (B ∪ C)c
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(v) (A ∩B)c ∪ C

[Montgomery and Runger, 2010, Q2-19]

(b) Let Ω = {0, 1, 2, 3, 4, 5, 6, 7}, and put A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, and C = {5, 6}.
Find A ∪B, A ∩B, A ∩ C, Ac, and B \ A.

For this problem, only answers are needed; you don’t have to describe your solution.

Solution :

(a) See Figure 1.1

A B

C

A B

C

C

A B

C

A B

C

A B

C

(a) (b) (c)

(d) (e)

Figure 1.1: Venn diagrams for events in Problem 1

(b) A ∪B = {1, 2, 3, 4, 5, 6}, A ∩B = {3, 4}, A ∩ C = ∅, B \ A = {5, 6} = C.

Problem 2. (Classical Probability and Combinatorics) A Web ad can be designed from
four different colors, three font types, five font sizes, three images, and five text phrases.

(a) How many different designs are possible? [Montgomery and Runger, 2010, Q2-51]

(b) A specific design is randomly generated by the Web server when you visit the site. If
you visit the site five times, what is the probability that you will not see the same
design? [Montgomery and Runger, 2010, Q2-71]
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Solution :

(a) By the multiplication rule, total number of possible designs

= 4× 3× 5× 3× 5 = 900 .

(b) From part (a), total number of possible designs is 900. The sample space is now the
set of all possible designs that may be seen on five visits. It contains (900)5 outcomes.
(This is ordered sampling with replacement.)

The number of outcomes in which all five visits are different can be obtained by realizing
that this is ordered sampling without replacement and hence there are (900)5 outcomes.
(Alternatively, On the first visit any one of 900 designs may be seen. On the second visit
there are 899 remaining designs. On the third visit there are 898 remaining designs.
On the fourth and fifth visits there are 897 and 896 remaining designs, respectively.
From the multiplication rule, the number of outcomes where all designs are different
is 900× 899× 898× 897× 896.)

Therefore, the probability that a design is not seen again is

(900)5

9005
≈ 0.9889.

Problem 3. (Classical Probability and Combinatorics) A bin of 50 parts contains
five that are defective. A sample of two parts is selected at random, without replacement.
Determine the probability that both parts in the sample are defective. [Montgomery and
Runger, 2010, Q2-49]

Solution : The number of ways to select two parts from 50 is
(

50
2

)
and the number of

ways to select two defective parts from the 5 defective ones is
(

5
2

)
Therefore the probability

is (
5
2

)(
50
2

) =
2

245
= 0.0082 .

Problem 4. (Classical Probability and Combinatorics) We all know that the chance
of a head (H) or tail (T) coming down after a fair coin is tossed are fifty-fifty. If a fair coin
is tossed ten times, then intuition says that five heads are likely to turn up.

Calculate the probability of getting exactly five heads (and hence exactly five tails).

Solution : There are 210 possible outcomes for ten coin tosses. (For each toss, there is
two possibilities, H or T). Only

(
10
5

)
among these outcomes have exactly heads and five tails.
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(Choose 5 positions from 10 position for H. Then, the rest of the positions are automatically
T.) The probability of have exactly 5 H and 5 T is(

10
5

)
210
≈ 0.246.

Note that five heads and five tails will turn up more frequently than any other single
combination (one head, nine tails for example) but the sum of all the other possibilities is
much greater than the single 5 H, 5 T combination.

Problem 5. (Classical Probability and Combinatorics) Shuffle a deck of cards and
cut it into three piles. What is the probability that (at least) a court card will turn up on
top of one of the piles.

Hint: There are 12 court cards (four jacks, four queens and four kings) in the deck.

Solution : In [Lovell, 2006, p. 17–19], this problem is named “Three Lucky Piles”. When
somebody cuts three piles, they are, in effect, randomly picking three cards from the deck.
There are 52× 51× 50 possible outcomes. The number of outcomes that do not contain any
court card is 40× 39× 38. So, the probability of having at least one court card is

52× 51× 50− 40× 39× 38

52× 51× 50
≈ 0.553.

Problem 6. (Classical Probability) There are three buttons which are painted red on one
side and white on the other. If we tosses the buttons into the air, calculate the probability
that all three come up the same color.

Remarks: A wrong way of thinking about this problem is to say that there are four ways
they can fall. All red showing, all white showing, two reds and a white or two whites and a
red. Hence, it seems that out of four possibilities, there are two favorable cases and hence
the probability is 1/2.

Solution : There are 8 possible outcomes. (The same number of outcomes as tossing
three coins.) Among these, only two outcomes will have all three buttons come up the same

color. So, the probability is 2/8 = 1/4 .

Problem 7. Each of the possible five outcomes of a random experiment is equally likely.
The sample space is {a, b, c, d, e}. Let A denote the event {a, b}, and let B denote the event
{c, d, e}. Determine the following:
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(a) P (A)

(b) P (B)

(c) P (Ac)

(d) P (A ∪B)

(e) P (A ∩B)

[Montgomery and Runger, 2010, Q2-54]

Solution : Because the outcomes are equally likely, we can simply use classical proba-
bility.

(a) P (A) = |A|
|Ω| =

2

5

(b) P (B) = |B|
|Ω| =

3

5

(c) P (Ac) = |Ac|
|Ω| = 5−2

5
=

3

5

(d) P (A ∪B) = |{a,b,c,d,e}|
|Ω| = 5

5
= 1

(e) P (A ∩B) = |∅|
|Ω| = 0

Extra Questions

Here are optional questions for those who want more practice. Caution: Some questions are
challenging.

Problem 8. (Combinatorics) Consider the design of a communication system in the
United States.

(a) How many three-digit phone prefixes that are used to represent a particular geographic
area (such as an area code) can be created from the digits 0 through 9?

(b) How many three-digit phone prefixes are possible in which no digit appears more than
once in each prefix?
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(c) As in part (a), how many three-digit phone prefixes are possible that do not start with
0 or 1, but contain 0 or 1 as the middle digit?

[Montgomery and Runger, 2010, Q2-45]

Solution :

(a) From the multiplication rule (or by realizing that this is ordered sampling with re-
placement), 103 = 1, 000 prefixes are possible

(b) This is ordered sampling without replacement. Therefore (10)3 = 10 × 9 × 8 = 720
prefixes are possible

(c) From the multiplication rule, 8× 2× 10 = 160 prefixes are possible.

Problem 9. Binomial theorem : For any positive integer n, we know that

(x+ y)n =
n∑

r=0

(
n

r

)
xryn−r. (1.1)

(a) What is the coefficient of x12y13 in the expansion of (x+ y)25?

(b) What is the coefficient of x12y13 in the expansion of (2x− 3y)25?

(c) Use the binomial theorem (1.1) to evaluate
n∑

k=0

(−1)k
(
n
k

)
.

(d) Use the binomial theorem (1.1) to simplify the following sums

(i)
n∑

r=0
r even

(
n
r

)
xr(1− x)n−r

(ii)
n∑

r=0
r odd

(
n
r

)
xr(1− x)n−r

(e) If we differentiate (1.1) with respect to x and then multiply by x, we have

n∑
r=0

r

(
n

r

)
xryn−r = nx(x+ y)n−1.

Use similar technique to simplify the sum
∑n

r=0 r
2
(
n
r

)
xryn−r.
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Solution :

(a)
(

25
12

)
= 5, 200, 300 .

(b)
(

25
12

)
212(−3)13 = − 25!

12!13!
212313 = −33959763545702400 .

(c) From (1.1), set x = −1 and y = 1, then we have
n∑

k=0

(−1)k
(
n
k

)
= (−1 + 1)n = 0 .

(d) To deal with the sum involving only the even terms (or only the odd terms), we first
use (1.1) to expand (x+y)n and (x+(−y))n. When we add the expanded results, only
the even terms in the sum are left. Similarly, when we find the difference between the
two expanded results, only the the odd terms are left. More specifically,

n∑
r=0

r even

(
n

r

)
xryn−r =

1

2
((x+ y)n + (y − x)n) , and

n∑
r=0
r odd

(
n

r

)
xryn−r =

1

2
((x+ y)n − (y − x)n) .

If x+ y = 1, then

n∑
r=0

r even

(
n

r

)
xryn−r =

1

2
(1 + (1− 2x)n) , and (1.2a)

n∑
r=0
r odd

(
n

r

)
xryn−r =

1

2
(1− (1− 2x)n) . (1.2b)

(e)
∑n

r=0 r
2
(
n
r

)
xryn−r = nx

(
x(n− 1)(x+ y)n−2 + (x+ y)n−1

)
.

Problem 10. An Even Split at Coin Tossing : Let pn be the probability of getting
exactly n heads (and hence exactly n tails) when a fair coin is tossed 2n times.

(a) Find pn.

(b) Sometimes, to work theoretically with large factorials, we use Stirling’s Formula:

n! ≈
√

2πnnne−n =
(√

2πe
)
e(n+ 1

2) ln(n
e ). (1.3)

Approximate pn using Stirling’s Formula.
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(c) Find lim
n→∞

pn.

Solution : Note that we have worked on a particular case (n = 5) of this problem earlier.

(a) Use the same solution as Problem 4; change 5 to n and 10 to 2n, we have

pn =

(
2n
n

)
22n

.

(b) By Stirling’s Formula, we have(
2n

n

)
=

(2n)!

n!n!
≈
√

2π2n(2n)2ne−2n(√
2πnnne−n

)2 =
4n

√
πn

.

Hence,

pn ≈
1√
πn

. (1.4)

[Mosteller, Fifty Challenging Problems in Probability with Solutions, 1987, Problem 18]

See Figure 1.2 for comparison of pn and its approximation via Stirling’s formula.
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0.3
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n

 

 

pn

Approximation of pn by Stirling’s Formula

Figure 1.2: Comparison of pn and its approximation via Stirling’s formula
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(c) From (1.4), lim
n→∞

pn = 0 . A more rigorous proof of this limit would use the bounds

4n

√
4n
≤
(

2n

n

)
≤ 4n

√
3n+ 1

.

Problem 11. (Classical Probability and Combinatorics) Suppose n integers are chosen
with replacement (that is, the same integer could be chosen repeatedly) at random from
{1, 2, 3, . . . , N}. Calculate the probability that the chosen numbers arise according to some
non-decreasing sequence.

Solution : There are Nn possible sequences. (This is ordered sampling with replace-
ment.) To find the probability, we need to count the number of non-decreasing sequences
among these Nn possible sequences. It takes some thought to realize that this is exactly the
counting problem that we called “unordered sampling with replacement”. In which case, we

can conclude that the probability is

(
n+N−1

n

)
Nn

. The “with replacement” part should be clear

from the question statement. The “unordered” part needs some more thought.
To see this, let’s look back at how we turn the “ordered sampling without replacement”

into “unordered sampling without replacement”. Recall that there are (N)n distinct samples
for “ordered sampling without replacement”. When we switch to the “unordered” case, we
see that many of the original samples from the “ordered sampling without replacement” are
regarded as the same in the “unordered” case. In fact, we can form “groups” of samples
whose members are regarded as the same in the “unordered” case. We can then count the
number of groups. In class, we found that the size of any individual group can be calculated
easily from permuting the elements in a sample and hence there are n! members in each
group. This leads us to conclude that there are (N)n/n! =

(
N
n

)
groups.

We are in a similar situation when we want to turn the “ordered sampling with replace-
ment” into “unordered sampling with replacement”. We first start with Nn distinct samples
from “ordered sampling with replacement”. Now, we again separate these samples into
groups. Let’s consider an example where n = 3. Then sequences “1 1 2”, “1 2 1”, and “2 1
1” are put together in the same group in the “unordered” case. Note that the size of this
group is 3. The sequences “1 2 3”, “1 3 2”, “2 1 3”, “2 3 1”, “3 1 2”, and “3 2 1” are in
another group. Note that the size of this group is 6. Therefore, the group sizes are not the
same and hence we can not find the number of groups by Nn/(group size) as in the sampling
without replacement discussed in the previous paragraph. To count the number of groups,
we look at the sequences from another perspective. We see that the “unordered” case, the
only information the characterizes each group is “how many of each number there are”. This
is why we can match the number of groups to the number of nonnegative-integer solutions to
the equation x1 + x2 + · · ·+ xN = n as discussed in class. Finally, note that for each group,
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we have only one possible nondecreasing sequence. So, the number of possible nondecreasing
sequence is the same as the number of groups.

If you think about the explanation above, you may realize that, by requiring the “order”
on the sequence, the counting problem become “unordered sampling”.

Here, we present two direct methods that leads to the same answer.

Method 1 : Because the sequence is non-decreasing, the number of times that each of the
integers {1, 2, . . . , N} shows up in the sequence is the only information that characterizes each
sequence. Let xi be the number of times that number i shows up in the sequence. The number
of sequences is then the same as the number of solution to the equation x1 +x2 + · · ·+xN = n
where the xi are all non-negative integers. We have seen in class that the number of solutions
is
(
n+N−1

n

)
.

Method 2 : [DasGupta, 2010, Example 1.14, p. 12] Consider the following construction
of such non-decreasing sequence. Start with n stars and N − 1 bars. There are

(
n+N−1

n

)
arrangements of these. For example, when N = 5 and n = 2, one arrangement is | ∗ || ∗ |.
Now, add spaces between these bars and stars including before the first one and after the
last one. For our earlier example, we have | ∗ | | ∗ | . Now, put number 1 in the leftmost
space. After this position, the next space holds the same value as the previous on if you
pass a ∗. On the other hand, if you pass a | then the value increases by 1. Note that
because there are N − 1 bars, the last space always gets the value N . What you now have
is a sequence of n + N numbers with bars between consecutive distinct numbers and stars
between consecutive equal numbers. For example, our example would gives 1|2 ∗ 2|3|4 ∗ 4|5.
Note that this gives a non-decreasing sequence of n + N numbers. The corresponding non-
decreasing sequence of n numbers for this arrangement of stars and bars is (2,4); that is we
only take the numbers to the right of the stars. Because there are n stars, our sequence will
have n numbers. It will be non-decreasing because it is a sub-sequence of the non-decreasing
n + N sequence. This shows that any arrangement of n stars and N − 1 bars gives one
nondecreasing sequence of n numbers.

Conversely, we can take any nondecreasing sequence of n numbers and combine it with
the full set of numbers {1, 2, 3, . . . , N} to form a set of n+N numbers. Now rearrange these
numbers in a nondecreasing order. Put a bar between consecutive distinct numbers in this
set and a star between consecutive equal numbers in this set. Note that the number to the
right of each star is an element of the original n-number sequence. This shows that any
nondecreasing sequence of n numbers corresponds to an arrangement of n stars and N − 1
bars.

Combining the two paragraphs above, we now know that the number of non-decreasing
sequences is the same as the number of arrangement of n stars and N − 1 bars, which is(
n+N−1

n

)
.

Remark : There is also a method— which will not be discussed here, but can be inferred
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by finding the pattern of the sums that lead to the number of non-decreasing sequences
as we increase the value of n— that would interestingly give the number of non-decreasing
sequences as

N∑
kn−1=1

· · ·
k3∑

k2=1

k2∑
k1=1

k1.

This sum can be simplified into
(
n+N−1

n

)
by the “parallel summation formula” which is

well-known but we didn’t discuss in class because this is not a class on combinatorics.
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HW Solution 2 — Due: Sep 4

Lecturer: Prapun Suksompong, Ph.D.

Instructions

(a) ONE part of a question will be graded (5 pt). Of course, you do not know which part
will be selected; so you should work on all of them.

(b) It is important that you try to solve all problems. (5 pt)

(c) Late submission will be heavily penalized.

(d) Write down all the steps that you have done to obtain your answers. You may not get
full credit even when your answer is correct without showing how you get your answer.

Problem 1. If A, B, and C are disjoint events with P (A) = 0.2, P (B) = 0.3 and P (C) = 0.4,
determine the following probabilities:

(a) P (A ∪B ∪ C)

(b) P (A ∩B ∩ C)

(c) P (A ∩B)

(d) P ((A ∪B) ∩ C)

(e) P (Ac ∩Bc ∩ Cc)

[Montgomery and Runger, 2010, Q2-75]

Solution :

(a) Because A, B, and C are disjoint, P (A∪B∪C) = P (A)+P (B)+P (C) = 0.3+0.2+0.4 =
0.9.

(b) Because A, B, and C are disjoint, A∩B∩C = ∅ and hence P (A∩B∩C) = P (∅) = 0 .

(c) Because A and B are disjoint, A ∩B = ∅ and hence P (A ∩B) = P (∅) = 0 .
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(d) (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C). By the disjointness among A, B, and C, we have
(A ∩ C) ∪ (B ∩ C) = ∅ ∪ ∅ = ∅. Therefore, P ((A ∪B) ∩ C) = P (∅) = 0 .

(e) From Ac ∩ Bc ∩ Cc = (A ∪ B ∪ C)c, we have P (Ac ∩ Bc ∩ Cc) = 1− P (A ∪ B ∪ C) =
1− 0.9 = 0.1.

Problem 2. The sample space of a random experiment is {a, b, c, d, e} with probabilities
0.1, 0.1, 0.2, 0.4, and 0.2, respectively. Let A denote the event {a, b, c}, and let B denote
the event {c, d, e}. Determine the following:

(a) P (A)

(b) P (B)

(c) P (Ac)

(d) P (A ∪B)

(e) P (A ∩B)

[Montgomery and Runger, 2010, Q2-55]

Solution :

(a) Recall that the probability of a finite or countable event equals the sum of the proba-
bilities of the outcomes in the event. Therefore,

P (A) = P ({a, b, c}) = P ({a}) + P ({b}) + P ({c})
= 0.1 + 0.1 + 0.2 = 0.4.

(b) Again, the probability of a finite or countable event equals the sum of the probabilities
of the outcomes in the event. Thus,

P (B) = P ({c, d, e}) = P ({c}) + P ({d}) + P ({e})
= 0.2 + 0.4 + 0.2 = 0.8.

(c) Applying the complement rule, we have P (Ac) = 1− P (A) = 1− 0.4 = 0.6.

(d) Note that A ∪B = Ω. Hence, P (A ∪B) = P (Ω) = 1.

(e) P (A ∩B) = P ({c}) = 0.2.
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Problem 3.

(a) Suppose that P (A) = 1
2

and P (B) = 2
3
. Find the range of possible values for P (A∩B).

Hint: Smaller than the interval [0, 1]. [Capinski and Zastawniak, 2003, Q4.21]

(b) Suppose that P (A) = 1
2

and P (B) = 1
3
. Find the range of possible values for P (A∪B).

Hint: Smaller than the interval [0, 1]. [Capinski and Zastawniak, 2003, Q4.22]

Solution :

(a) We will try to derive general bounds for P (A ∩B).

First, recall1, from the lecture notes, that “P (A∩B) can not exceed P (A) and P (B)”:

P (A ∩B) ≤ min{P (A), P (B)}. (2.1)

On the other hand, we know that

P (A ∪B) = P (A) + P (B)− P (A ∩B). (2.2)

Now, P (A ∪B) is a probability and hence its value must be between 0 and 1:

0 ≤ P (A ∪B) ≤ 1 (2.3)

Combining (2.3) with (2.2) gives

P (A) + P (B)− 1 ≤ P (A ∩B) ≤ P (A) + P (B). (2.4)

The second inequality in (2.4) is not useful because (2.1) gives a better2 bound. So,
we will replace the second inequality with (2.1):

P (A) + P (B)− 1 ≤ P (A ∩B) ≤ min{P (A), P (B)}. (2.5)

Finally, P (A ∩B) is also a probability and hence it must be between 0 and 1:

0 ≤ P (A ∩B) ≤ 1 (2.6)

Combining (2.6) and (2.5), we have

max{(P (A) + P (B)− 1), 0} ≤ P (A ∩B) ≤ min{P (A), P (B), 1}.
1Again, to see this, note that A ∩ B ⊂ A and A ∩ B ⊂ B. Hence, we know that P (A ∩ B) ≤ P (A) and

P (A ∩B) ≤ P (B).
2When we already know that a number is less than 3, learning that it is less than 5 does not give us any

new information.
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Note that number one at the end of the expression above is not necessary because the
two probabilities under minimization can not exceed 1 themselves. In conclusion,

max{(P (A) + P (B)− 1), 0} ≤ P (A ∩B) ≤ min{P (A), P (B)}.

Plugging in the value P (A) = 1
2

and P (B) = 2
3

gives the range

[
1

6
,
1

2

]
.

Note that the upper-bound can be obtained by constructing an example which has
A ⊂ B. The lower-bound can be obtained by considering an example where A∪B = Ω.

(b) We will try to derive general bounds for P (A ∪B).

By monotonicity, because both A and B are subset of A ∪B, we must have

P (A ∪B) ≥ max{P (A), P (B)}.

On the other hand, we know, from the finite sub-additivity property, that

P (A ∪B) ≤ P (A) + P (B).

Therefore,
max{P (A), P (B)} ≤ P (A ∪B) ≤ P (A) + P (B).

Being a probability, P (A ∪B) must be between 0 and 1. Hence,

max{P (A), P (B), 0} ≤ P (A ∪B) ≤ min {(P (A) + P (B)) , 1} .

Note that number 0 is not needed in the aximization because the two probabilities
involved are automatically ≥ 0 themselves.

In conclusion,

max{P (A), P (B)} ≤ P (A ∪B) ≤ min{(P (A) + P (B)), 1}.

Plugging in the value P (A) = 1
2

and P (B) = 1
3
, we have

P (A ∪B) ∈
[

1

2
,
5

6

]
.

The upper-bound can be obtained by making A ⊥ B. The lower-bound is achieved
when B ⊂ A.
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Problem 4. Let A and B be events for which P (A), P (B), and P (A ∪ B) are known.
Express the following probabilities in terms of the three known probabilities above.

(a) P (A ∩B)

(b) P (A ∩Bc)

(c) P (B ∪ (A ∩Bc))

(d) P (Ac ∩Bc)

Solution :

(a) P (A ∩B) = P (A) + P (B)− P (A ∪B) . This property is shown in class.

(b) We have seen3 in class that P (A ∩Bc) = P (A)−P (A∩B). Plugging in the expression
for P (A ∩B) from the previous part, we have

P (A ∩Bc) = P (A)− (P (A) + P (B)− P (A ∪B)) = P (A ∪B)− P (B) .

Alternatively, we can start from scratch with the set identity A ∪ B = B ∪ (A ∩Bc)
whose union is a disjoint union. Hence,

P (A ∪B) = P (B) + P (A ∩Bc) .

Moving P (B) to the LHS finishes the proof.

(c) P (B ∪ (A ∩Bc)) = P (A ∪B) because A ∪B = B ∪ (A ∩Bc).

(d) P (Ac ∩Bc) = 1− P (A ∪B) because Ac ∩Bc = (A ∪B)c.

3This shows up when we try to derive the formula P (A∪B) = P (A) +P (B)−P (A∩B). The key idea is
that the set A can be expressed as a disjoint union between A∩B and A∩Bc. Therefore, by finite additivity,
P (A) = P (A ∩B) + P (A ∩Bc). It is easier to visualize this via the Venn diagram.
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HW Solution 3 — Due: Sep 11

Lecturer: Prapun Suksompong, Ph.D.

Instructions

(a) ONE part of a question will be graded (5 pt). Of course, you do not know which part
will be selected; so you should work on all of them.

(b) It is important that you try to solve all problems. (5 pt)
The extra question at the end is optional.

(c) Late submission will be heavily penalized.

(d) Write down all the steps that you have done to obtain your answers. You may not get
full credit even when your answer is correct without showing how you get your answer.

Problem 1.

(a) Suppose that P (A|B) = 0.4 and P (B) = 0.5 Determine the following:

(i) P (A ∩B)

(ii) P (Ac ∩B)

[Montgomery and Runger, 2010, Q2-105]

(b) Suppose that P (A|B) = 0.2, P (A|Bc) = 0.3 and P (B) = 0.8 What is P (A)? [Mont-
gomery and Runger, 2010, Q2-106]

Solution :

(a) Recall that P (A ∩B) = P (A|B)P (B). Therefore,

(i) P (A ∩B) = 0.4× 0.5 = 0.2.

(ii) P (Ac ∩B) = P (B \ A) = P (B)− P (A ∩B) = 0.5− 0.2 = 0.3.

Alternatively, P (Ac∩B) = P (Ac|B)P (B) = (1−P (A|B))P (B) = (1−0.4)×0.5 =
0.3.
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(b) By the total probability formula, P (A) = P (A|B)P (B) +P (A|Bc)P (Bc) = 0.2×0.8 +
0.3× (1− 0.8) = 0.22.

Problem 2. Due to an Internet configuration error, packets sent from New York to Los
Angeles are routed through El Paso, Texas with probability 3/4. Given that a packet is
routed through El Paso, suppose it has conditional probability 1/3 of being dropped. Given
that a packet is not routed through El Paso, suppose it has conditional probability 1/4 of
being dropped.

(a) Find the probability that a packet is dropped.
Hint: Use total probability theorem.

(b) Find the conditional probability that a packet is routed through El Paso given that it
is not dropped.
Hint: Use Bayes’ theorem.

[Gubner, 2006, Ex.1.20]

Solution : To solve this problem, we use the notation E = {routed through El Paso}
and D = {packet is dropped}. With this notation, it is easy to interpret the problem as
telling us that

P (D|E) = 1/3, P (D|Ec) = 1/4, and P (E) = 3/4.

(a) By the law of total probability,

P (D) = P (D|E)P (E) + P (D|Ec)P (Ec) = (1/3)(3/4) + (1/4)(1− 3/4)

= 1/4 + 1/16 = 5/16 = 0.3125.

(b) P (E|Dc) = P (E∩Dc)
P (Dc)

= P (Dc|E)P (E)
P (Dc)

= (1−1/3)(3/4)
1−5/16 =

8

11
≈ 0.7273.

Problem 3. You have two coins, a fair one with probability of heads 1
2

and an unfair one
with probability of heads 1

3
, but otherwise identical. A coin is selected at random and tossed,

falling heads up. How likely is it that it is the fair one? [Capinski and Zastawniak, 2003,
Q7.28]

Solution : Let F,U, and H be the events that “the selected coin is fair”, “the selected
coin is unfair”, and “the coin lands heads up”, respectively.
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Because the coin is selected at random, the probability P (F ) of selecting the fair coin is
P (F ) = 1

2
. For fair coin, the conditional probability P (H|F ) of heads is 1

2
For the unfair

coin, P (U) = 1− P (F ) = 1
2

and P (H|U) = 1
3
.

By the Bayes’ formula, the probability that the fair coin has been selected given that it
lands heads up is

P (F |H) =
P (H|F )P (F )

P (H|F )P (F ) + P (H|U)P (U)
=

1
2
× 1

2
1
2
× 1

2
+ 1

3
× 1

2

=
1
2

1
2

+ 1
3

=
1

1 + 2
3

=
3

5
.

Problem 4. You have three coins in your pocket, two fair ones but the third biased with
probability of heads p and tails 1−p. One coin selected at random drops to the floor, landing
heads up. How likely is it that it is one of the fair coins? [Capinski and Zastawniak, 2003,
Q7.29]

Solution : Let F,U, and H be the events that “the selected coin is fair”, “the selected
coin is unfair”, and “the coin lands heads up”, respectively. We are given that

P (F ) =
2

3
, P (U) =

1

3
, P (H|F ) =

1

2
, P (H|U) = p.

By Bayes’ theorem, the probability that one of the fair coins has been selected given that it
lands heads up is

P (F |H) =
P (H|F )P (F )

P (H|F )P (F ) + P (H|U)P (U)
=

1
2
× 2

3
1
2
× 2

3
+ p× 1

3

=
1

1 + p
.

Alternative Solution : Let F1, F2, U and H be the events that “the selected coin is the
first fair coin”, “the selected coin is the second fair coin”, “the selected coin is unfair”, and
“the coin lands heads up”, respectively.

Because the coin is selected at random, the events F1, F2, and U are equally likely:

P (F1) = P (F2) = P (U) =
1

3
.

For fair coins, the conditional probability of heads is 1
2

and for the unfair coin, the conditional
probability of heads is p:

P (H|F1) = P (H|F2) =
1

2
, P (H|U) = p.

The probability that one of the fair coins has been selected given that it lands heads up is
P (F1 ∪ F2|H). Now F1 and F2 are disjoint events. Therefore,

P (F1 ∪ F2|H) = P (F1|H) + P (F2|H).
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By Bayes’ theorem,

P (F1 |H ) =
P (H |F1 )P (F1)

P (H)
and P (F2 |H ) =

P (H |F2 )P (F2)

P (H)
.

Therefore,

P (F1 ∪ F2|H) =
P (H |F1 )P (F1)

P (H)
+
P (H |F2 )P (F2)

P (H)
=

P (H |F1 )P (F1) + P (H |F2 )P (F2)

P (H)
.

Note that the collection of three events F1, F2, and U partitions the sample space.
Therefore, by the total probability theorem,

P (H) = P (H |F1 )P (F1) + P (H |F2 )P (F2) + P (H |U )P (U) .

Plugging the above expression of P (H) into our expression for P (F1 ∪ F2|H) gives

P (F1 ∪ F2|H) =
P (H |F1 )P (F1) + P (H |F2 )P (F2)

P (H |F1 )P (F1) + P (H |F2 )P (F2) + P (H |U )P (U)

=
1
2
× 1

3
+ 1

2
× 1

3
1
2
× 1

3
+ 1

2
× 1

3
+ p× 1

3

=
1

1 + p
.

Problem 5. Someone has rolled a fair dice twice. You know that one of the rolls turned
up a face value of six. What is the probability that the other roll turned up a six as well?
[Tijms, 2007, Example 8.1, p. 244]

Hint: Not 1
6
.

Solution : Take as sample space the set {(i, j)|i, j = 1, . . . , 6}, where i and j denote the
outcomes of the first and second rolls. A probability of 1/36 is assigned to each element of
the sample space. The event of two sixes is given by A = {(6, 6)} and the event of at least
one six is given by B = (1, 6), . . . , (5, 6), (6, 6), (6, 5), . . . , (6, 1). Applying the definition of
conditional probability gives

P (A|B) = P (A ∩B)/P (B) =
1/36

11/36
.

Hence the desired probability is 1/11 .

Problem 6. Suppose that for the general population, 1 in 5000 people carries the human
immunodeficiency virus (HIV). A test for the presence of HIV yields either a positive (+) or
negative (-) response. Suppose the test gives the correct answer 99% of the time.

3-4



ECS 315 HW Solution 3 — Due: Sep 11 2014/1

(a) What is P (−|H), the conditional probability that a person tests negative given that
the person does have the HIV virus?

(b) What is P (H|+), the conditional probability that a randomly chosen person has the
HIV virus given that the person tests positive?

Solution :

(a) Because the test is correct 99% of the time,

P (−|H) = P (+|Hc) = 0.01 .

(b) Using Bayes’ formula, P (H|+) = P (+|H)P (H)
P (+)

, where P (+) can be evaluated by the total
probability formula:

P (+) = P (+|H)P (H) + P (+|Hc)P (Hc) = 0.99× 0.0002 + 0.01× 0.9998.

Plugging this back into the Bayes’ formula gives

P (H|+) =
0.99× 0.0002

0.99× 0.0002 + 0.01× 0.9998
≈ 0.0194 .

Thus, even though the test is correct 99% of the time, the probability that a random
person who tests positive actually has HIV is less than 2%. The reason this probability
is so low is that the a priori probability that a person has HIV is very small.

Extra Question

Here are optional questions for those who want more practice.

Problem 7.

(a) Suppose that P (A|B) = 1/3 and P (A|Bc) = 1/4. Find the range of the possible values
for P (A).

(b) Suppose that C1, C2, and C3 partition Ω. Furthermore, suppose we know that P (A|C1) =
1/3, P (A|C2) = 1/4 and P (A|C3) = 1/5. Find the range of the possible values for
P (A).

Solution : First recall the total probability theorem: Suppose we have a collection of
events B1, B2, . . . , Bn which partitions Ω. Then,

P (A) = P (A ∩B1) + P (A ∩B2) + · · ·P (A ∩Bn)

= P (A |B1 )P (B1) + P (A |B2 )P (B2) + · · ·P (A |Bn )P (Bn)
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(a) Note that B and Bc partition Ω. So, we can apply the total probability theorem:

P (A) = P (A |B )P (B) + P (A |Bc )P (Bc) =
1

3
P (B) +

1

4
(1− P (B)) .

You may check that, by varying the value of P (B) from 0 to 1, we can get the value
of P (A) to be any number in the range

[
1
4
, 1
3

]
. Technically, we can not use P (B) = 0

because that would make P (A|B) not well-defined. Similarly, we can not use P (B) =
1 because that would mean P (Bc) = 0 and hence make P (A|Bc) not well-defined.

Therfore, the range of P (A) is

(
1

4
,
1

3

)
.

Note that larger value of P (A) is not possible because

P (A) =
1

3
P (B) +

1

4
(1− P (B)) <

1

3
P (B) +

1

3
(1− P (B)) =

1

3
.

Similarly, smaller value of P (A) is not possible because

P (A) =
1

3
P (B) +

1

4
(1− P (B)) >

1

4
P (B) +

1

3
(1− P (B)) =

1

4
.

(b) Again, we apply the total probability theorem:

P (A) = P (A |C1 )P (C1) + P (A |C2 )P (C2) + P (A |C3 )P (C3)

=
1

3
P (C1) +

1

4
P (C2) +

1

5
P (C3) .

Because C1, C2, and C3 partition Ω, we know that P (C1) + P (C2) + P (C3) = 1. Now,

P (A) =
1

3
P (C1) +

1

4
P (C2) +

1

5
P (C3) <

1

3
P (C1) +

1

3
P (C2) +

1

3
P (C3) =

1

3
.

Similarly,

P (A) =
1

3
P (C1) +

1

4
P (C2) +

1

5
P (C3) >

1

5
P (C1) +

1

5
P (C2) +

1

5
P (C3) =

1

5
.

Therefore, P (A) must be inside
(
1
5
, 1
3

)
.

You may check that any value of P (A) in the range

(
1

5
,
1

3

)
can be obtained by first

setting the value of P (C2) to be close to 0 and varying the value of P (C1) from 0 to 1.
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Problem 8. Software to detect fraud in consumer phone cards tracks the number of metropoli-
tan areas where calls originate each day. It is found that 1% of the legitimate users originate
calls from two or more metropolitan areas in a single day. However, 30% of fraudulent users
originate calls from two or more metropolitan areas in a single day. The proportion of fraud-
ulent users is 0.01%. If the same user originates calls from two or more metropolitan areas in
a single day, what is the probability that the user is fraudulent? [Montgomery and Runger,
2010, Q2-144]

Solution : Let F denote the event of fraudulent user and let M denote the event of
originating calls from multiple (two or more) metropolitan areas in a day. Then,

P (F |M ) =
P (M |F )P (F )

P (M |F )P (F ) + P (M |F c)P (F c)
=

1

1 + P (M |F c)
P (M |F )

× P (F c)
P (F )

=
1

1 +
1

100
30
100

×
9999
104
1

104

=
1

1 + 9999
30

=
30

30 + 9999
=

30

10029
≈ 0.0030 .

Problem 9. In his book Chances: Risk and Odds in Everyday Life, James Burke says that
there is a 72% chance a polygraph test (lie detector test) will catch a person who is, in
fact, lying. Furthermore, there is approximately a 7% chance that the polygraph will falsely
accuse someone of lying.

(a) If the polygraph indicated that 30% of the questions were answered with lies, what
would you estimate for the actual percentage of lies in the answers?

(b) If the polygraph indicated that 70% of the questions were answered with lies, what
would you estimate for the actual percentage of lies?

[Brase and Brase, 2011, Q4.2.26]

Solution : Let AT and AL be the events that “the person actually answers the truth”
and “the person actually answers with lie”, respectively. Also, let PT and PL be the events
that “the polygraph indicates that the answer is the truth” and “the polygraph indicates
that the answer is a lie”, respectively.

We know, from the provided information, that P [PL|AL] = 0.72 and that P [PL|AT ] =
0.07.

Applying the total probability theorem, we have

P (PL) = P (PL|AL)P (AL) + P (PL|AT )P (AT )

= P (PL|AL)P (AL) + P (PL|AT )(1− P (AL)).
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Solving for P (AL), we have

P (AL) =
P (PL)− P (PL |AT )

P (PL |AL)− P (PL |AT )
=

P (PL)− 0.07

0.72− 0.07
=

P (PL)− 0.07

0.65
.

(a) Plugging in P (PL) = 0.3, we have P (AL) = 0.3538 .

(b) Plugging in P (PL) = 0.7, we have P (AL) = 0.9692 .

Problem 10. An article in the British Medical Journal [“Comparison of Treatment of Re-
nal Calculi by Operative Surgery, Percutaneous Nephrolithotomy, and Extracorporeal Shock
Wave Lithotripsy” (1986, Vol. 82, pp. 879892)] provided the following discussion of success
rates in kidney stone removals. Open surgery (OS) had a success rate of 78% (273/350) while
a newer method, percutaneous nephrolithotomy (PN), had a success rate of 83% (289/350).
This newer method looked better, but the results changed when stone diameter was con-
sidered. For stones with diameters less than two centimeters, 93% (81/87) of cases of open
surgery were successful compared with only 87% (234/270) of cases of PN. For stones greater
than or equal to two centimeters, the success rates were 73% (192/263) and 69% (55/80)
for open surgery and PN, respectively. Open surgery is better for both stone sizes, but less
successful in total. In 1951, E. H. Simpson pointed out this apparent contradiction (known
as Simpson’s Paradox) but the hazard still persists today. Explain how open surgery can be
better for both stone sizes but worse in total. [Montgomery and Runger, 2010, Q2-115]

Solution : First, let’s recall the total probability theorem:

P (A) = P (A ∩B) + P (A ∩Bc)

= P (A |B )P (B) + P (A |Bc )P (Bc) .

We can see that P (A) does not depend only on P (A ∩B) and P (A |Bc ). It also depends
on P (B) and P (Bc). In the extreme case, we may imagine the case with P (B) = 1 in which
P (A) = P (A|B). At another extreme, we may imagine the case with P (B) = 0 in which
P (A) = P (A|Bc). Therefore, depending on the value of P (B), the value of P (A) can be
anywhere between P (A|B) and P (A|Bc).

Now, let’s consider events A1, B1, A2, and B2. Let P (A1|B1) = 0.93 and P (A1|Bc
1) =

0.73. Therefore, P (A1) ∈ [0.73, 0.93]. On the other hand, let P (A2|B2) = 0.87 and
P (A2|Bc

2) = 0.69. Therefore, P (A2) ∈ [0.69, 0.87]. With small value of P (B1), the value of
P (A1) can be 0.78 which is closer to its lower end of the bound. With large value of P (B2),
the value of P (A2) can be 0.83 which is closer to its upper end of the bound. Therefore,
even though P (A1|B1) > P (A2|B2) = 0.87 and P (A1|Bc

1) > P (A2|Bc
2), it is possible that

P (A1) < P (A2).
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In the context of the paradox under consideration, note that the success rate of PN with
small stones (87%) is higher than the success rate of OS with large stones (73%). Therefore,
by having a lot of large stone cases to be tested under OS and also have a lot of small stone
cases to be tested under PN, we can create a situation where the overall success rate of PN
comes out to be better then the success rate of OS. This is exactly what happened in the
study as shown in Table 3.1.

Applied Statistics and Probability for Engineers, 5th edition 15 January 2010 

2-19 

 P(R)= P(R|N)P(N) + P(R|A)P(A) + P(R|W)P(W) 
        = (0.02)(0.25) + (0.03) (0.6) + (0.06)(0.15) 
        = 0.032 
 
2-110. Let A denote the event that a respondent is a college graduate and let B denote the event that an individual votes for 

Bush.  
P(B) = P(A)P(B|A) + P(A’)P(B|A’) = (0.38 × 0.52) + (0.62 × 0.5) = 0.0613 

 
2-111. a) (0.88)(0.27) = 0.2376 

b)  (0.12)(0.13+0.52) = 0.0.078 
 

2-112.      a)P = 0.13×0.73=0.0949 
b)P = 0.87× (0.27+0.17)=0.3828 
 

2-113. Let A and B denote the event that the first and second part selected has excessive shrinkage, respectively. 
 a) P(B)= P( B A )P(A) + P(B A ')P(A') 
             = (4/24)(5/25) + (5/24)(20/25) = 0.20 
 b) Let C denote the event that the third part selected has excessive shrinkage. 
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2-114. Let A and B denote the events that the first and second chips selected are defective, respectively.  
 a) P(B) = P(B|A)P(A) + P(B|A')P(A') = (19/99)(20/100) + (20/99)(80/100) = 0.2 

 b) Let C denote the event that the third chip selected is defective. 
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Open surgery      

 success failure 
sample 

size 
sample 

percentage 
conditional 

success rate 
large stone 192 71 263 75% 73% 
small stone 81 6 87 25% 93% 

overall summary 273 77 350 100% 78% 
      

PN      

 success failure 
sample 

size 
sample 

percentage 
conditional 

success rate 
large stone 55 25 80 23% 69% 
small stone 234 36 270 77% 87% 

overall summary 289 61 350 100% 83% 
 

The overall success rate depends on the success rates for each stone size group, but also the probability of the groups. It 
is the weighted average of the group success rate weighted by the group size as follows 

P(overall success) = P(success| large stone)P(large stone)) + P(success| small stone)P(small stone). 
For open surgery, the dominant group (large stone) has a smaller success rate while for PN, the dominant group (small 
stone) has a larger success rate. 

 
2-116. P(A) = 112/204 = 0.5490, P(B) = 92/204 = 0.4510 

Table 3.1: Success rates in kidney stone removals.
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HW Solution 4 — Due: September 18

Lecturer: Prapun Suksompong, Ph.D.

Instructions

(a) ONE part of a question will be graded (5 pt). Of course, you do not know which part
will be selected; so you should work on all of them.

(b) It is important that you try to solve all problems. (5 pt)
The extra questions at the end are optional.

(c) Late submission will be heavily penalized.

(d) Write down all the steps that you have done to obtain your answers. You may not get
full credit even when your answer is correct without showing how you get your answer.

Problem 1. A Web ad can be designed from four different colors, three font types, five font
sizes, three images, and five text phrases. A specific design is randomly generated by the
Web server when you visit the site. Let A denote the event that the design color is red and
let B denote the event that the font size is not the smallest one.

(a) Use classical probability to evaluate P (A), P (B) and P (A ∩ B). Show that the two
events A and B are independent by checking whether P (A ∩B) = P (A)P (B).

(b) Using the values of P (A) and P (B) from the previous part and the fact that A |= B,
calculate the following probabilities.

(i) P (A ∪B)

(ii) P (A ∪Bc)

(iii) P (Ac ∪Bc)

[Montgomery and Runger, 2010, Q2-84]

Solution :
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(a) By multiplication rule, there are

|Ω| = 4× 3× 5× 3× 5 (4.1)

possible designs. The number of designs whose color is red is given by

|A| = 1× 3× 5× 3× 5.

Note that the “4” in (4.1) is replaced by “1” because we only consider one color (red).
Therefore,

P (A) =
1× 3× 5× 3× 5

4× 3× 5× 3× 5
=

1

4
.

Similarly, |B| = 4× 3× 4× 3× 5 where the “5” in the middle of (4.1) is replaced by
“4” because we can’t use the smallest font size. Therefore,

P (B) =
4× 3× 4× 3× 5

4× 3× 5× 3× 5
=

4

5
.

For the event A ∩B, we replace “4” in (4.1) by “1” because we need red color and we
replace “5” in the middle of (4.1) by “4” because we can’t use the smallest font size.
This gives

P (A ∩B) =
|A ∩B|
|Ω|

=
1× 3× 4× 3× 5

4× 3× 5× 3× 5
=

1× 4

4× 5
=

1

5
= 0.2.

Because P (A ∩B) = P (A)P (B), the events A and B are independent.

(b)

(i) P (A ∪B) = P (A) + P (B)− P (A ∩B) = 1
4

+ 4
5
− 1

5
=

17

20
= 0.85.

(ii) Method 1: P (A ∪ Bc) = 1 − P ((A ∪Bc)c) = 1 − P (Ac ∩ B). Because A |= B,
we also have Ac |= B. Hence, P (Ac ∪Bc) = 1−P (Ac)P (B) = 1− 3

4
4
5

= 2
5

= 0.4.

Method 2: From the Venn diagram, note that A ∪ Bc can be expressed as a
disjoint union: A ∪Bc = Bc ∪ (A ∩B). Therefore,

P (A ∪Bc) = P (Bc) + P (A ∩B) = 1− P (B) + P (A)P (B) = 1− 4

5
+

1

4

4

5
=

2

5
.

Method 3: From the Venn diagram, note that A ∪ Bc can be expressed as a
disjoint union: A∪Bc = A∪(Ac ∩Bc). Therefore, P (A∪Bc) = P (A)+P (Ac∩Bc).
Because A |= B, we also have Ac |= Bc. Hence,

P (A∪Bc) = P (A)+P (Ac)P (Bc) = P (A)+(1− P (A)) (1− P (B)) =
1

4
+

3

4

1

5
=

2

5
.
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(iii) Method 1: P (Ac ∪Bc) = 1− P ((Ac ∪Bc)c) = 1− P (A ∩B) = 1− 0.2 = 0.8.

Method 2: From the Venn diagram, note that Ac ∪ Bc can be expressed as a
disjoint union: Ac ∪Bc = (Ac ∩B) ∪ (A ∩Bc) ∪ (Ac ∩Bc). Therefore,

P (Ac ∪Bc) = P (Ac ∩B) + P (A ∩Bc) + P (Ac ∩Bc) .

Now, because A |= B, we also have Ac |= B, A |= Bc, and Ac |= Bc. Hence,

P (Ac ∪Bc) = P (Ac)P (B) + P (A)P (Bc) + P (Ac)P (Bc)

= (1− P (A))P (B) + P (A) (1− P (B)) + (1− P (A)) (1− P (B))

=
3

4
× 4

5
+

1

4
× 1

5
+

3

4
× 1

5
=

16

20
=

4

5

Problem 2. In this question, each experiment has equiprobable outcomes.

(a) Let Ω = {1, 2, 3, 4}, A1 = {1, 2}, A2 = {1, 3}, A3 = {2, 3}.

(i) Determine whether P (Ai ∩ Aj) = P (Ai)P (Aj) for all i 6= j.

(ii) Check whether P (A1 ∩ A2 ∩ A3) = P (A1)P (A2)P (A3).

(iii) Are A1, A2, and A3 independent?

(b) Let Ω = {1, 2, 3, 4, 5, 6}, A1 = {1, 2, 3, 4}, A2 = A3 = {4, 5, 6}.

(i) Check whether P (A1 ∩ A2 ∩ A3) = P (A1)P (A2)P (A3).

(ii) Check whether P (Ai ∩ Aj) = P (Ai)P (Aj) for all i 6= j.

(iii) Are A1, A2, and A3 independent?

Solution :

(a) We have P (Ai) = 1
2

and P (Ai ∩ Aj) = 1
4
.

(i) P (Ai ∩ Aj) = P (Ai)P (Aj) for any i 6= j.

(ii) A1 ∩ A2 ∩ A3 = ∅. Hence, P (A1 ∩ A2 ∩ A3) = 0, which is not the same as
P (A1)P (A2)P (A3).

(iii) No.

Remark: This counter-example shows that pairwise independence does not imply in-
dependence.

(b) We have P (A1) = 4
6

= 2
3

and P (A2) = P (A3) = 3
6

= 1
2
.
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(i) A1 ∩ A2 ∩ A3 = {4}. Hence, P (A1 ∩ A2 ∩ A3) = 1
6
.

P (A1)P (A2)P (A3) = 2
3
1
2
1
2

= 1
6
.

Hence, P (A1 ∩ A2 ∩ A3) = P (A1)P (A2)P (A3).

(ii) P (A2 ∩ A3) = P (A2) = 1
2
6= P (A2)P (A3)

P (A1 ∩ A2) = p(4) = 1
6
6= P (A1)P (A2)

P (A1 ∩ A3) = p(4) = 1
6
6= P (A1)P (A3)

Hence, P (Ai ∩ Aj) 6= P (Ai)P (Aj) for all i 6= j.

(iii) No.

Remark: This counter-example shows that one product condition does not imply in-
dependence.

Problem 3. In an experiment, A, B, C, and D are events with probabilities P (A∪B) = 5
8
,

P (A) = 3
8
, P (C ∩D) = 1

3
, and P (C) = 1

2
. Furthermore, A and B are disjoint, while C and

D are independent.

(a) Find

(i) P (A ∩B)

(ii) P (B)

(iii) P (A ∩Bc)

(iv) P (A ∪Bc)

(b) Are A and B independent?

(c) Find

(i) P (D)

(ii) P (C ∩Dc)

(iii) P (Cc ∩Dc)

(iv) P (C|D)

(v) P (C ∪D)

(vi) P (C ∪Dc)

(d) Are C and Dc independent?

Solution :
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(a)

(i) Because A ⊥ B, we have A ∩B = ∅ and hence P (A ∩B) = 0 .

(ii) Recall that P (A ∪ B) = P (A) + P (B)− P (A ∩ B). Hence, P (B) = P (A ∪ B)−
P (A) + P (A ∩B) = 5/8− 3/8 + 0 = 2/8 = 1/4 .

(iii) P (A ∩Bc) = P (A)− P (A ∩B) = P (A) = 3/8 .

(iv) Start with P (A ∪Bc) = 1− P (Ac ∩B). Now, P (Ac ∩B) = P (B)− P (A ∩B) =

P (B) = 1/4. Hence, P (A ∪Bc) = 1− 1/4 = 3/4 .

(b) Events A and B are not independent because P (A ∩B) 6= P (A)P (B).

(c)

(i) Because C |= D, we have P (C ∩ D) = P (C)P (D). Hence, P (D) = P (C∩D)
P (C)

=
1/3
1/2

= 2/3 .

(ii) Method 1: P (C ∩Dc) = P (C)− P (C ∩D) = 1/2− 1/3 = 1/6 .

Method 2: Alternatively, because C |= D, we know that C |= Dc. Hence, P (C ∩
Dc) = P (C)P (Dc) = 1

2

(
1− 2

3

)
= 1

2
1
3

= 1
6
.

(iii) Method 1: First, we find P (C∪D) = P (C)+P (D)−P (C∩D) = 1/2+2/3−1/3 =

5/6. Hence, P (Cc ∩Dc) = 1− P (C ∪D) = 1− 5/6 = 1/6 .

Method 2: Alternatively, because C |= D, we know that Cc |= Dc. Hence, P (Cc∩
Dc) = P (Cc)P (Dc) =

(
1− 1

2

) (
1− 2

3

)
= 1

2
1
3

= 1
6
.

(iv) Because C |= D, we have P (C|D) = P (C) = 1/2 .

(v) In part (iii), we already found P (C ∪ D) = P (C) + P (D) − P (C ∩ D) = 1/2 +

2/3− 1/3 = 5/6 .

(vi) Method 1: P (C ∪ Dc) = 1 − P (Cc ∩ D) = 1 − P (Cc)P (D) = 1 − 1
2
2
3

= 2/3 .

Note that we use the fact that Cc |= D to get the second equality.

Method 2: Alternatively, P (C ∪ Dc) = P (C) + P (Dc) − P (C ∩ DC). From
(i), we have P (D) = 2/3. Hence, P (Dc) = 1 − 2/3 = 1/3. From (ii), we have
P (C ∩DC) = 1/6. Therefore, P (C ∪Dc) = 1/2 + 1/3− 1/6 = 2/3.

(d) Yes. We know that if C |= D, then C |= Dc.
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52 CHAPTER 2 PROBABILITY

This definition is typically used to calculate the probability that several events occur assuming
that they are independent and the individual event probabilities are known. The knowledge
that the events are independent usually comes from a fundamental understanding of the
random experiment.

When considering three or more events, we can extend the definition of independence
with the following general result.

The events E1, E2 are independent if and only if for any subset of these
events 

(2-14)P1Ei1 ¨ Ei2 ¨ p ¨ Eik2 � P1Ei12 � P1Ei22 � p � P1Eik2

Ei1, Ei2, p , Eik,
, p , En

Independence
(multiple events)

EXAMPLE 2-32 Series Circuit
The following circuit operates only if there is a path of func-
tional devices from left to right. The probability that each de-
vice functions is shown on the graph. Assume that devices fail
independently. What is the probability that the circuit operates?

Let L and R denote the events that the left and right devices
operate, respectively. There is only a path if both operate. The

0.8 0.9

probability the circuit operates is

Practical Interpretation: Notice that the probability that the
circuit operates degrades to approximately 0.5 when all devices
are required to be functional. The probability each device is func-
tional needs to be large for a circuit to operate when many devices
are connected in series.

P1L and R2 � P1L ¨ R2 � P1L2P1R2 � 0.8010.902 � 0.72

EXAMPLE 2-33
Assume that the probability that a wafer contains a large par-
ticle of contamination is 0.01 and that the wafers are inde-
pendent; that is, the probability that a wafer contains a large
particle is not dependent on the characteristics of any of the
other wafers. If 15 wafers are analyzed, what is the probability
that no large particles are found?

Let Ei denote the event that the ith wafer contains no large
particles, Then, The probabilityP1Ei2 � 0.99.i � 1, 2, p , 15.

requested can be represented as From
the independence assumption and Equation 2-14,

� P1E152 � 0.9915 � 0.86
P1E1 ¨ E2 ¨  p ¨ E152 � P1E12 � P1E22 � p

P1E1 ¨ E2 ¨  
p ¨ E152.

EXAMPLE 2-34 Parallel Circuit
The following circuit operates only if there is a path of func-
tional devices from left to right. The probability that each de-
vice functions is shown on the graph. Assume that devices fail
independently. What is the probability that the circuit operates?

Let T and B denote the events that the top and bottom de-
vices operate, respectively. There is a path if at least one device
operates. The probability that the circuit operates is

0.95

0.95

a b

A simple formula for the solution can be derived from the
complements and From the independence assumption,

so

Practical Interpretation: Notice that the probability that the cir-
cuit operates is larger than the probability that either device is
functional. This is an advantage of a parallel architecture. A dis-
advantage is that multiple devices are needed.

P1T or B2 � 1 
 0.052 � 0.9975

P1T¿ and B¿ 2 � P1T¿ 2P1B¿ 2 � 11 
 0.9522 � 0.052

B¿.T¿

P1T or B2 � 1 
 P 3 1T or B2 ¿ 4 � 1 
 P1T¿ and B¿ 2
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Figure 4.1: Circuit for Problem 4

Problem 4. Series Circuit: The circuit in Figure 4.1 operates only if there is a path of
functional devices from left to right. The probability that each device functions is shown on
the graph. Assume that devices fail independently. What is the probability that the circuit
operates? [Montgomery and Runger, 2010, Ex. 2-32]

Solution : Let L and R denote the events that the left and right devices operate, respec-
tively. For a path to exist, both need to operate. Therefore, the probability that the circuit
operates is P (L ∩R).

We are told that Lc |= Rc. This is equivalent to L |= R. By their independence,

P (L ∩R) = P (L)P (R) = 0.8× 0.9 = 0.72 .

Extra Questions

Here are optional questions for those who want more practice.

Problem 5. Show that if A and B are independent events, then so are A and Bc, Ac and
B, and Ac and Bc.

Solution : To show that two events C1 and C2 are independent, we need to show that
P (C1 ∩ C2) = P (C1)P (C2).

(a) Note that
P (A ∩Bc) = P (A \B) = P (A)− P (A ∩B).

Because A |= B, the last term can be factored in to P (A)P (B) and hence

P (A ∩Bc) = P (A)− P (A)P (B) = P (A)(1− P (B)) = P (A)P (Bc)

(b) By interchanging the role of A and B in the previous part, we have

P (Ac ∩B) = P (B ∩ Ac) = P (B)P (Ac) .
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(c) From set theory, we know that Ac ∩Bc = (A ∪B)c. Therefore,

P (Ac ∩Bc) = 1− P (A ∪B) = 1− P (A)− P (B) + P (A ∩B) ,

where, for the last equality, we use

P (A ∪B) = P (A) + P (B)− P (A ∩B)

which is discussed in class.

Because A |= B, we have

P (Ac ∩Bc) = 1− P (A)− P (B) + P (A)P (B) = (1− P (A)) (1− P (B))

= P (Ac)P (Bc).

Remark: By interchanging the roles of A and Ac and/or B and Bc, it follows that if any
one of the four pairs is independent, then so are the other three. [Gubner, 2006, p.31]

Problem 6. Anne and Betty go fishing. Find the conditional probability that Anne catches
no fish given that at least one of them catches no fish. Assume they catch fish independently
and that each has probability 0 < p < 1 of catching no fish. [Gubner, 2006, Q2.62]

Hint: Let A be the event that Anne catches no fish and B be the event that Betty catches
no fish. Observe that the question asks you to evaluate P (A|(A ∪B)).

Solution : From the question, we know that A and B are independent. The event “at
least one of the two women catches nothing” can be represented by A ∪B. So we have

P (A|A ∪B) =
P (A ∩ (A ∪B))

P (A ∪B)
=

P (A)

P (A) + P (B)− P (A)P (B)
=

p

2p− p2
=

1

2− p
.

Problem 7. The circuit in Figure 4.2 operates only if there is a path of functional devices
from left to right. The probability that each device functions is shown on the graph. As-
sume that devices fail independently. What is the probability that the circuit operates?
[Montgomery and Runger, 2010, Ex. 2-34]

Solution : Let T and B denote the events that the top and bottom devices operate,
respectively. There is a path if at least one device operates. Therefore, the probability that
the circuit operates is P (T ∪B). Note that

P (T ∪B) = 1− P ((T ∪B)c) = 1− P (T c ∩Bc) .
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52 CHAPTER 2 PROBABILITY

This definition is typically used to calculate the probability that several events occur assuming
that they are independent and the individual event probabilities are known. The knowledge
that the events are independent usually comes from a fundamental understanding of the
random experiment.

When considering three or more events, we can extend the definition of independence
with the following general result.

The events E1, E2 are independent if and only if for any subset of these
events 

(2-14)P1Ei1 ¨ Ei2 ¨ p ¨ Eik2 � P1Ei12 � P1Ei22 � p � P1Eik2

Ei1, Ei2, p , Eik,
, p , En

Independence
(multiple events)

EXAMPLE 2-32 Series Circuit
The following circuit operates only if there is a path of func-
tional devices from left to right. The probability that each de-
vice functions is shown on the graph. Assume that devices fail
independently. What is the probability that the circuit operates?

Let L and R denote the events that the left and right devices
operate, respectively. There is only a path if both operate. The

0.8 0.9

probability the circuit operates is

Practical Interpretation: Notice that the probability that the
circuit operates degrades to approximately 0.5 when all devices
are required to be functional. The probability each device is func-
tional needs to be large for a circuit to operate when many devices
are connected in series.

P1L and R2 � P1L ¨ R2 � P1L2P1R2 � 0.8010.902 � 0.72

EXAMPLE 2-33
Assume that the probability that a wafer contains a large par-
ticle of contamination is 0.01 and that the wafers are inde-
pendent; that is, the probability that a wafer contains a large
particle is not dependent on the characteristics of any of the
other wafers. If 15 wafers are analyzed, what is the probability
that no large particles are found?

Let Ei denote the event that the ith wafer contains no large
particles, Then, The probabilityP1Ei2 � 0.99.i � 1, 2, p , 15.

requested can be represented as From
the independence assumption and Equation 2-14,

� P1E152 � 0.9915 � 0.86
P1E1 ¨ E2 ¨  p ¨ E152 � P1E12 � P1E22 � p

P1E1 ¨ E2 ¨  
p ¨ E152.

EXAMPLE 2-34 Parallel Circuit
The following circuit operates only if there is a path of func-
tional devices from left to right. The probability that each de-
vice functions is shown on the graph. Assume that devices fail
independently. What is the probability that the circuit operates?

Let T and B denote the events that the top and bottom de-
vices operate, respectively. There is a path if at least one device
operates. The probability that the circuit operates is

0.95

0.95

a b

A simple formula for the solution can be derived from the
complements and From the independence assumption,

so

Practical Interpretation: Notice that the probability that the cir-
cuit operates is larger than the probability that either device is
functional. This is an advantage of a parallel architecture. A dis-
advantage is that multiple devices are needed.

P1T or B2 � 1 
 0.052 � 0.9975

P1T¿ and B¿ 2 � P1T¿ 2P1B¿ 2 � 11 
 0.9522 � 0.052

B¿.T¿

P1T or B2 � 1 
 P 3 1T or B2 ¿ 4 � 1 
 P1T¿ and B¿ 2
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Figure 4.2: Circuit for Problem 7

We are told that T c |= Bc. By their independence,

P (T c ∩Bc) = P (T c)P (Bc) = (1− 0.95)× (1− 0.95) = 0.052 = 0.0025.

Therefore,
P (T ∪B) = 1− P (T c ∩Bc) = 1− 0.0025 = 0.9975 .

Problem 8. The circuit in Figure 4.3 operates only if there is a path of functional devices
from left to right. The probability that each device functions is shown on the graph. As-
sume that devices fail independently. What is the probability that the circuit operates?
[Montgomery and Runger, 2010, Ex. 2-35]

2-6 INDEPENDENCE 53

EXAMPLE 2-35 Advanced Circuit
The following circuit operates only if there is a path of func-
tional devices from left to right. The probability that each de-
vice functions is shown on the graph. Assume that devices
fail independently. What is the probability that the circuit 
operates?

The solution can be obtained from a partition of the
graph into three columns. Let L denote the event that there

0.9

0.9

0.95

0.95

0.9 0.99a b

is a path of functional devices only through the three units
on the left. From the independence and based upon the pre-
vious example,

Similarly, let M denote the event that there is a path of functional
devices only through the two units in the middle. Then,

The probability that there is a path of functional devices only
through the one unit on the right is simply the probability that
the device functions, namely, 0.99. Therefore, with the inde-
pendence assumption used again, the solution is

11 
 0.132 11 
 0.0522 10.992 � 0.987

P1M2 � 1 
 0.052

P1L2 � 1 
 0.13

EXERCISES FOR SECTION 2-6

2-122. If and are
the events A and B independent?

2-123. If and are
the events B and the complement of A independent?

2-124. If and A and B are mutu-
ally exclusive, are they independent?

2-125. A batch of 500 containers for frozen orange juice
contains five that are defective. Two are selected, at random,
without replacement, from the batch. Let A and B denote the
events that the first and second containers selected are defec-
tive, respectively.
(a) Are A and B independent events?
(b) If the sampling were done with replacement, would A and

B be independent?

2-126. Disks of polycarbonate plastic from a supplier are
analyzed for scratch and shock resistance. The results from
100 disks are summarized as follows:

shock resistance

high low

scratch high 70 9

resistance low 16 5

Let A denote the event that a disk has high shock resistance,
and let B denote the event that a disk has high scratch resis-
tance. Are events A and B independent?

P1A2 � 0.2, P1B2 � 0.2,

P1A2 � 0.3,P1A ƒ B2 � 0.3,  P1B2 � 0.8,

P1A2 � 0.5,P1A ƒ B2 � 0.4,  P1B2 � 0.8, 2-127. Samples of emissions from three suppliers are clas-
sified for conformance to air-quality specifications. The re-
sults from 100 samples are summarized as follows:

conforms

yes no

1 22 8

supplier 2 25 5

3 30 10

Let A denote the event that a sample is from supplier 1, and let
B denote the event that a sample conforms to specifications.
(a) Are events A and B independent?
(b) Determine 

2-128. Redundant Array of Inexpensive Disks (RAID) is a
technology that uses multiple hard drives to increase the speed
of data transfer and provide instant data backup. Suppose that
the probability of any hard drive failing in a day is 0.001 and
the drive failures are independent.
(a) A RAID 0 scheme uses two hard drives, each containing a

mirror image of the other. What is the probability of data
loss? Assume that data loss occurs if both drives fail
within the same day.

(b) A RAID 1 scheme splits the data over two hard drives.
What is the probability of data loss? Assume that data loss
occurs if at least one drive fails within the same day.

P1B ƒ A2.

JWCL232_c02_017-065.qxd  1/7/10  9:46 AM  Page 53

Figure 4.3: Circuit for Problem 8

Solution : The solution can be obtained from a partition of the graph into three columns.
Let L denote the event that there is a path of functional devices only through the three units
on the left. From the independence and based upon Problem 7,

P (L) = 1− (1− 0.9)3 = 1− 0.13 = 0.999.
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Similarly, let M denote the event that there is a path of functional devices only through the
two units in the middle. Then,

P (M) = 1− (1− 0.95)2 = 1− 0.052 = 1− 0.0025 = 0.9975.

Finally, the probability that there is a path of functional devices only through the one unit
on the right is simply the probability that the device functions, namely, 0.99.

Therefore, with the independence assumption used again, along with similar reasoning
to the solution of Problem 4, the solution is

0.999× 0.9975× 0.99 = 0.986537475 ≈ 0.987 .

Problem 9. Show that

(a) P (A ∩B ∩ C) = P (A)× P (B|A)× P (C|A ∩B).

(b) P (B ∩ C|A) = P (B|A)P (C|B ∩ A)

Solution :

(a) We can see directly from the definition of P (B|A) that

P (A ∩B) = P (A)P (B|A).

Similarly, when we consider event A ∩B and event C, we have

P (A ∩B ∩ C) = P (A ∩B)P (C|A ∩B) .

Combining the two equalities above, we have

P (A ∩B ∩ C) = P (A)× P (B|A)× P (C|A ∩B) .

(b) By definition,

P (B ∩ C|A) =
P (A ∩B ∩ C)

P (A)
.

Substitute P (A ∩B ∩ C) from part (a) to get

P (B ∩ C|A) =
P (A)× P (B|A)× P (C|A ∩B)

P (A)
= P (B|A)× P (C|A ∩B) .
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HW Solution 5 — Due: Sep 25

Lecturer: Prapun Suksompong, Ph.D.

Instructions

(a) ONE part of a question will be graded (5 pt). Of course, you do not know which part
will be selected; so you should work on all of them.

(b) It is important that you try to solve all problems. (5 pt)
The extra question at the end is optional.

(c) Late submission will be heavily penalized.

(d) Write down all the steps that you have done to obtain your answers. You may not get
full credit even when your answer is correct without showing how you get your answer.

Problem 1 (Majority Voting in Digital Communication). A certain binary communication
system has a bit-error rate of 0.1; i.e., in transmitting a single bit, the probability of receiving
the bit in error is 0.1. To transmit messages, a three-bit repetition code is used. In other
words, to send the message 1, a “codeword” 111 is transmitted, and to send the message 0,
a “codeword” 000 is transmitted. At the receiver, if two or more 1s are received, the decoder
decides that message 1 was sent; otherwise, i.e., if two or more zeros are received, it decides
that message 0 was sent.

Assuming bit errors occur independently, find the probability that the decoder puts out
the wrong message.

[Gubner, 2006, Q2.62]

Solution : Let p = 0.1 be the bit error rate. Let E be the error event. (This is the event
that the decoded bit value is not the same as the transmitted bit value.) Because majority
voting is used, event E occurs if and only if there are at least two bit errors. Therefore

P (E) =

(
3

2

)
p2(1− p) +

(
3

3

)
p3 = p2(3− 2p).

When p = 0.1, we have P (E) ≈ 0.028 .
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Problem 2. An optical inspection system is to distinguish among different part types.
The probability of a correct classification of any part is 0.98. Suppose that three parts are
inspected and that the classifications are independent.

(a) Let the random variable X denote the number of parts that are correctly classified.
Determine the probability mass function of X. [Montgomery and Runger, 2010, Q3-20]

(b) Let the random variable Y denote the number of parts that are incorrectly classified.
Determine the probability mass function of Y .

Solution1:
We will reexpress the problem in terms of Bernoulli trials so that we can use the results

discussed in class. In this problem, we have three Bernoulli trials. Each trial deals with
classification.

(a) To find pX(x), first we find its support. Three parts are inspected here. Therefore, X
can be 0, 1, 2, or 3. So, we need to find pX(x) = P [X = x] when x = 0, 1, 2 or 3. The
pmf pX(x) for other x values are all 0 because X cannot take the value of those x.

For each x ∈ {0, 1, 2, 3}, pX(x) = P [X = x] is simply the probability that exactly x
parts are correctly classified. Note that, because we are interested in the correctly
classified part, we define the “success” event for a trial to be the event that the part is
classified correctly. We are given that the probability of a correct classification of any
part is 0.98. Therefore, for each of our Bernoulli trials, the probability of success is
p = 0.98. Under such interpretation (of “success”), pX(x) is then the same as finding
the probability of having exactly x successes in n = 3 Bernoulli trials. We have seen
in class that the probability of this is

(
3
x

)
px(1− p)3−x. Plugging in p = 0.98, we have

pX(x) =
(
3
x

)
0.98x(0.02)3−x for x ∈ {0, 1, 2, 3}.

Combining the expression above with the cases for other x values, we then have

pX (x) =

{ (
3
x

)
0.98x(0.02)3−x, x ∈ {0, 1, 2, 3},

0, otherwise
(5.1)

In particular, pX(0) = 8 × 10−6, pX(1) = 0.001176, pX(2) = 0.057624, and pX(3) =
0.941192. In fact, this X is a binomial random variable with n = 3 and p = 0.98. In
MATLAB, the probabilities above can be calculated via the command
binopdf(0:3,3,0.98).

1The solution provided here assumes that we still haven’t reached the part of the course where binomial
random variable is discussed. Therefore, the pmf is derived by relying on the concept of Bernoulli trials and
the formula discussed back when we studied that topic.
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(b) Method 1 : Similar analysis is performed on the random variable Y . The only differ-
ence here is that, now, we are interested in the number of parts that are incorrectly
classified. Therefore, we will define the “success” event for a trial to be the event that
the part is classified incorrectly . We are given that the probability of a correct classi-
fication of any part is 0.98. Therefore, for each of our Bernoulli trials, the probability
of success is 1− p = 1− 0.98 = 0.02. With this new probability of success, we have

pY (y) =

{ (3
y

)
0.02y(0.98)3−y, y ∈ {0, 1, 2, 3},

0, otherwise
(5.2)

In particular, pY (0) = 0.941192, pY (1) = 0.057624, pY (2) = 0.001176, and pY (3) =
8 × 10−6. In fact, this Y is a binomial random variable with n = 3 and p = 0.02. In
MATLAB, the probability values above can be calculated via the command
binopdf(0:3,3,0.02).

Method 2 : Alternatively, note that there are three parts. If X of them are classified
correctly, then the number of incorrectly classified parts is n − X, which is what we
defined as Y . Therefore, Y = 3 − X. Hence, pY (y) = P [Y = y] = P [3−X = y] =
P [X = 3− y] = pX(3− y).

Problem 3. Consider the sample space Ω = {−2,−1, 0, 1, 2, 3, 4}. Suppose that P (A) =
|A|/|Ω| for any event A ⊂ Ω. Define the random variable X(ω) = ω2. Find the probability
mass function of X.

Solution : The random variable maps the outcomes ω = −2,−1, 0, 1, 2, 3, 4 to numbers
x = 4, 1, 0, 1, 4, 9, 16, respectively. Therefore,

pX (0) = P ({ω : X(ω) = 0}) = P ({0}) =
1

7
,

pX (1) = P ({ω : X(ω) = 1}) = P ({−1, 1}) =
2

7
,

pX (4) = P ({ω : X(ω) = 4}) = P ({−2, 2}) =
2

7
,

pX (9) = P ({ω : X(ω) = 9}) = P ({3}) =
1

7
, and

pX (16) = P ({ω : X(ω) = 16}) = P ({4}) =
1

7
.

Combining the results above, we get the complete pmf:

pX (x) =


1
7
, x = 0, 9, 16,

2
7
, x = 1, 4,

0, otherwise.
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Problem 4. Suppose X is a random variable whose pmf at x = 0, 1, 2, 3, 4 is given by
pX(x) = 2x+1

25
.

Remark: Note that the statement above does not specify the value of the pX(x) at the
value of x that is not 0,1,2,3, or 4.

(a) What is pX(5)?

(b) Determine the following probabilities:

(i) P [X = 4]

(ii) P [X ≤ 1]

(iii) P [2 ≤ X < 4]

(iv) P [X > −10]

Solution :

(a) First, we calculate
4∑

x=0

pX (x) =
4∑

x=0

2x + 1

25
=

25

25
= 1.

Therefore, there can’t be any other x with pX(x) > 0. At x = 5, we then conclude
that pX(5) = 0. The same reasoning also implies that pX(x) = 0 at any x that is not
0,1,2,3, or 4.

(b) Recall that, for discrete random variable X, the probability

P [some condition(s) on X]

can be calculated by adding pX(x) for all x in the support of X that satisfies the given
condition(s).

(i) P [X = 4] = pX(4) = 2×4+1
25

=
9

25
.

(ii) P [X ≤ 1] = pX(0) + pX(1) = 2×0+1
25

+ 2×1+1
25

= 1
25

+ 3
25

=
4

25
.

(iii) P [2 ≤ X < 4] = pX(2) + pX(3) = 2×2+1
25

+ 2×3+1
25

= 5
25

+ 7
25

=
12

25
.

(iv) P [X > −10] = 1 because all the x in the support of X satisfies x > −10.
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Problem 5. The random variable V has pmf

pV (v) =

{
cv2, v = 1, 2, 3, 4,
0, otherwise.

(a) Find the value of the constant c.

(b) Find P [V ∈ {u2 : u = 1, 2, 3, . . .}].

(c) Find the probability that V is an even number.

(d) Find P [V > 2].

(e) Sketch pV (v).

(f) Sketch FV (v). (Note that FV (v) = P [V ≤ v].)

Solution : [Y&G, Q2.2.3]

(a) We choose c so that the pmf sums to one:∑
v

pV (v) = c(12 + 22 + 32 + 42) = 30c = 1.

Hence, c = 1/30 .

(b) P [V ∈ {u2 : u = 1, 2, 3, . . .}] = pV (1) + pV (4) = c(12 + 42) = 17/30 .

(c) P [V even] = pV (2) + pV (4) = c(22 + 42) = 20/30 = 2/3 .

(d) P [V > 2] = pV (3) + pV (4) = c(32 + 42) = 25/30 = 5/6 .

(e) See Figure 5.1 for the sketch of pV (v):

(f) See Figure 5.2 for the sketch of FV (v):

Extra Question

Problem 6. Consider a transmission over a binary symmetric channel (BSC) with crossover
probability p. The random (binary) input to the BSC is denoted by X. Let p1 be the
probability that X = 1. (This implies the probability that X = 0 is 1 − p1.) Let Y by the
output of the BSC.
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Figure 5.1: Sketch of pV (v) for Question 5
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Figure 5.2: Sketch of FV (v) for Question 5

(a) Suppose, at the receiver (which observes the output of the BSC), we learned that
Y = 1. For each of the following scenarios, which event is more likely, “X = 1 was
transmitted” or “X = 0 was transmitted”? (Hint: Use Bayes’ theorem.)

(i) Assume p = 0.3 and p1 = 0.1.

(ii) Assume p = 0.3 and p1 = 0.5.

(iii) Assume p = 0.3 and p1 = 0.9.

(iv) Assume p = 0.7 and p1 = 0.5.

(b) Suppose, at the receiver (which observes the output of the BSC), we learned that
Y = 0. For each of the following scenarios, which event is more likely, “X = 1 was
transmitted” or “X = 0 was transmitted”?

(i) Assume p = 0.3 and p1 = 0.1
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(ii) Assume p = 0.3 and p1 = 0.5

(iii) Assume p = 0.3 and p1 = 0.9

(iv) Assume p = 0.7 and p1 = 0.5

Remark: A MAP (maximum a posteriori) detector is a detector that takes the observed
value Y and then calculate the most likely transmitted value. More specifically,

x̂MAP (y) = arg max
x

P [X = x|Y = y]

In fact, in part (a), each of your answers is x̂MAP (1) and in part (b), each of your answers
is x̂MAP (0).

Solution : First, recall that, in class, we define P [X = x] to be P ([X = x]). Here, we
extend the such definition to conditional probability. In particular,

P [Y = y |X = x ] = P ([Y = y] |[X = x] ) .

Here, we are given that P [X = 1] = p1. Applying P (Ac) = 1−P (A), we have P [X = 0] =
1− p1. We are also given that

P [Y = 1 |X = 0] = P [Y = 0 |X = 1] = p.

Applying P (Ac |B ) = 1− P (A |B ), we have

P [Y = 0 |X = 0] = P [Y = 1 |X = 1] = 1− p.

(a) Here, we know that Y = 1. To find out what was transmitted, we compare P [X = 0 |Y = 1]
and P [X = 1 |Y = 1]. By Bayes’ theorem,

P [X = 0 |Y = 1] =
P [Y = 1 |X = 0]P [X = 0]

P [Y = 1]
=

p (1− p1)

P [Y = 1]
=

p− pp1
P [Y = 1]

and

P [X = 1 |Y = 1] =
P [Y = 1 |X = 1]P [X = 1]

P [Y = 1]
=

(1− p) p1
P [Y = 1]

=
p1 − pp1
P [Y = 1]

Note that both terms have “−pp1” in the numerator and “P [Y = 1]” the denominator.
So, we can simply compare the “p” and “p1” parts.

(i) When p = 0.3 and p1 = 0.1, we have p > p1. Therefore, P [X = 0 |Y = 1] >
P [X = 1 |Y = 1]. In other words, conditioned on Y = 1, the event X = 0 is
more likely.
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(ii) When p = 0.3 and p1 = 0.5, we have p < p1. Therefore, P [X = 0 |Y = 1] <
P [X = 1 |Y = 1]. In other words, conditioned on Y = 1, the event X = 1 is
more likely.

(iii) When p = 0.3 and p1 = 0.9, we have p < p1. Therefore, P [X = 0 |Y = 1] <
P [X = 1 |Y = 1]. In other words, conditioned on Y = 1, the event X = 1 is
more likely.

(iv) When p = 0.7 and p1 = 0.5, we have p > p1. Therefore, P [X = 0 |Y = 1] >
P [X = 1 |Y = 1]. In other words, conditioned on Y = 1, the event X = 0 is
more likely.

(b) In this part, we know that Y = 0. To find out what was transmitted, we compare
P [X = 0 |Y = 0] and P [X = 1 |Y = 0]. By Bayes’ theorem,

P [X = 0 |Y = 0] =
P [Y = 0 |X = 0]P [X = 0]

P [Y = 0]
=

(1− p) (1− p1)

P [Y = 0]
=

1− p− p1 + pp1
P [Y = 0]

and

P [X = 1 |Y = 0] =
P [Y = 0 |X = 1]P [X = 1]

P [Y = 0]
=

pp1
P [Y = 0]

=
pp1

P [Y = 0]

Note that both terms have “−pp1” in the numerator and “P [Y = 0]” the denominator.
So, we can simply compare the “1− p− p1” and “′′0 parts.

(i) When p = 0.3 and p1 = 0.1, we have 1 − p − p1 = 0.6 > 0. Therefore,
P [X = 0 |Y = 0] > P [X = 1 |Y = 0]. In other words, conditioned on Y = 0,
the event X = 0 is more likely.

(ii) When p = 0.3 and p1 = 0.5, we have 1 − p − p1 = 0.2 > 0. Therefore,
P [X = 0 |Y = 0] > P [X = 1 |Y = 0]. In other words, conditioned on Y = 0,
the event X = 0 is more likely.

(iii) When p = 0.3 and p1 = 0.9, we have 1 − p − p1 = −0.2 < 0. Therefore,
P [X = 0 |Y = 0] > P [X = 1 |Y = 0]. In other words, conditioned on Y = 1, the
event X = 1 is more likely.

(iv) When p = 0.7 and p1 = 0.5,we have 1 − p − p1 = −0.2 < 0. Therefore,
P [X = 0 |Y = 0] > P [X = 1 |Y = 0]. In other words, conditioned on Y = 0,
the event X = 1 is more likely.
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Problem 1. The thickness of the wood paneling (in inches) that a customer orders is a
random variable with the following cdf:

FX(x) =


0, x < 1

8

0.2, 1
8
≤ x < 1

4

0.9, 1
4
≤ x < 3

8

1 x ≥ 3
8

Determine the following probabilities:

(a) P [X ≤ 1/18]

(b) P [X ≤ 1/4]

(c) P [X ≤ 5/16]

(d) P [X > 1/4]

(e) P [X ≤ 1/2]

[Montgomery and Runger, 2010, Q3-42]

Solution :

(a) P [X ≤ 1/18] = FX(1/18) = 0 because 1
18
< 1

8
.

(b) P [X ≤ 1/4] = FX(1/4) = 0.9 .

(c) P [X ≤ 5/16] = FX(5/16) = 0.9 because 1
4
< 5

16
< 3

8
.

(d) P [X > 1/4] = 1− P [X ≤ 1/4] = 1− FX(1/4) = 1− 0.9 = 0.1 .

(e) P [X ≤ 1/2] = FX(1/2) = 1 because 1
2
> 3

8
.

Alternatively, we can also derive the pmf first and then calculate the probabilities.
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Figure 6.1: CDF of X for Problem 2

Problem 2. [M2011/1] The cdf of a random variable X is plotted in Figure 6.1.

(a) Find the pmf pX(x).

(b) Find the family to which X belongs. (Uniform, Bernoulli, Binomial, Geometric, Pois-
son, etc.)

Solution :

(a) For discrete random variable, P [X = x] is the jump size at x on the cdf plot. In this
problem, there are four jumps at 0, 1, 2, 3.

• P [X = 0] = the jump size at 0 = 0.064 = 64
1000

= (4/10)3 = (2/5)3.

• P [X = 1] = the jump size at 1 = 0.352− 0.064 = 0.288.

• P [X = 2] = the jump size at 2 = 0.784− 0.352 = 0.432.

• P [X = 3] = the jump size at 3 = 1− 0.784 = 0.216 = (6/10)3.

In conclusion,

pX (x) =


0.064, x = 0,
0.288, x = 1,
0.432, x = 2,
0.216, x = 3,
0, otherwise.

6-2



ECS 315 HW Solution 6 — Due: Not Due 2014/1

(b) Among all the pmf that we discussed in class, only one can have support = {0, 1, 2, 3}
with unequal probabilities. This is the binomial pmf. To check that it really is
Binomial, recall that the pmf for binomial X is given by pX(x) =

(
n
x

)
px(1 − p)(n−x)

for x = 0, 1, 2, . . . , n. Here, n = 3. Furthermore, observe that pX(0) = (1 − p)n. By
comparing pX(0) with what we had in part (a), we have 1− p = 2/5 or p = 3/5. For
x = 1, 2, 3, plugging in p = 3/5 and n = 3 in to pX(x) =

(
n
x

)
px(1 − p)(n−x) gives the

same values as what we had in part (a). So, X is a binomial RV.

Problem 3. Arrivals of customers at the local supermarket are modeled by a Poisson process
with a rate of λ = 2 customers per minute. Let M be the number of customers arriving
between 9:00 and 9:05. What is the probability that M < 2?

Solution : Here, we are given that M ∼ P(α) where α = λT = 2× 5 = 10. Recall that,
for M ∼ P(α), we have

P [M = m] =

{
e−α α

m

m!
, m ∈ {0, 1, 2, 3, . . .}

0, otherwise

Therefore,

P [M < 2] = P [M = 0] + P [M = 1] = e−α
α0

0!
+ e−α

α1

1!
= e−α (1 + α) = e−10 (1 + 10) = 11e−10 ≈ 5× 10−4.

Problem 4. When n is large, binomial distribution Binomial(n, p) becomes difficult to
compute directly because of the need to calculate factorial terms. In this question, we will
consider an approximation when the value of p is close to 0. In such case, the binomial can be
approximated1 by the Poisson distribution with parameter α = np. For this approximation
to work, we will see in this exercise that n does not have to be very large and p does not
need to be very small.

(a) Let X ∼ Binomial(12, 1/36). (For example, roll two dice 12 times and let X be the
number of times a double 6 appears.) Evaluate pX(x) for x = 0, 1, 2.

(b) Compare your answers part (a) with its Poisson approximation.

1More specifically, suppose Xn has a binomial distribution with parameters n and pn. If pn → 0 and
npn → α as n→∞, then

P [Xn = k]→ e−α
αk

k!
.
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(c) Compare MATLAB plots of pX(x) in part (a) and the pmf of P(np).

Solution :

(a) For Binomial(n, p) random variable,

pX(x) =

{ (
n
x

)
px(1− p)n−x, x ∈ {0, 1, 2, . . . , n},

0, otherwise.

Here, we are given that n = 12 and p = 1
36

. Plugging in x = 0, 1, 2, we get

0.7132, 0.2445, 0.0384 , respectively

(b) A Poisson random variable with parameter α = np can approximate a Binomial(n, p)
random variable when n is large and p is small. Here, with n = 12 and p = 1

36
, we

have α = 12× 1
36

= 1
3
. The Poisson pmf at x = 0, 1, 2 is given by e−α α

x

x!
= e−1/3 (1/3)

x

x!
.

Plugging in x = 0, 1, 2 gives 0.7165, 0.2388, 0.0398 , respectively.

(c) See Figure 6.2. Note how close they are!
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Binomial pmf
Poisson pmf

Figure 6.2: Poisson Approximation
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Problem 5. You go to a party with 500 guests. What is the probability that exactly one
other guest has the same birthday as you? Calculate this exactly and also approximately by
using the Poisson pmf. (For simplicity, exclude birthdays on February 29.) [Bertsekas and
Tsitsiklis, 2008, Q2.2.2]

Solution : Let N be the number of guests that has the same birthday as you. We may
think of the comparison of your birthday with each of the guests as a Bernoulli trial. Here,
there are 500 guests and therefore we are considering n = 500 trials. For each trial, the
(success) probability that you have the same birthday as the corresponding guest is p = 1

365
.

Then, this N ∼ Binomial(n, p).

(a) Binomial: P [N = 1] = np1(1− p)n−1 ≈ 0.348.

(b) Poisson: P [N = 1] = e−np (np)
1

1!
≈ 0.348.

Extra Questions

Here are some questions for those who want extra practice.

Problem 6. A sample of a radioactive material emits particles at a rate of 0.7 per sec-
ond. Assuming that these are emitted in accordance with a Poisson distribution, find the
probability that in one second

(a) exactly one is emitted,

(b) more than three are emitted,

(c) between one and four (inclusive) are emitted

[Applebaum, 2008, Q5.27].

Solution : Let X be the number or particles emitted during the one second under
consideration. Then X ∼ P(α) where α = λT = 0.7× 1 = 0.7.

(a) P [X = 1] = e−α α
1

1!
= αe−α = 0.7e−0.7 ≈ 0.3477.

(b) P [X > 3] = 1− P [X ≤ 3] = 1−
3∑

k=0

e−0.7 0.7k

k!
≈ 0.0058.

(c) P [1 ≤ X ≤ 4] =
4∑

k=1

e−0.7 0.7k

k!
≈ 0.5026.
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Problem 7 (M2011/1). You are given an unfair coin with probability of obtaining a head
equal to 1/3, 000, 000, 000. You toss this coin 6,000,000,000 times. Let A be the event that
you get “tails for all the tosses”. Let B be the event that you get “heads for all the tosses”.

(a) Approximate P (A).

(b) Approximate P (A ∪B).

Solution : Let N be the number of heads among the n tosses. Then, N ∼ B(n, p). Here, we
have small p = 1/3 × 109 and large n = 6 × 109. So, we can apply Poisson approximation.
In other words, B(n, p) is well-approximated by P(α) where α = np = 2.

(a) P (A) = P [N = 0] = e−220

0!
= 1

e2
≈ 0.1353.

(b) P (A∪B) = P [N = 0]+P [N = n] = e−2 20

0!
+e−2 26×109

(6×109)!
. The second term is extremely

small compared to the first one. Hence, P (A∪B) is approximately the same as P (A).

Problem 8. In one of the New York state lottery games, a number is chosen at random
between 0 and 999. Suppose you play this game 250 times. Use the Poisson approximation
to estimate the probability that you will never win and compare this with the exact answer.

Solution :[Durrett, 2009, Q2.41] LetW be the number of wins. Then, W ∼ Binomial(250, p)
where p = 1/1000. Hence,

P [W = 0] =

(
250

0

)
p0(1− p)250 ≈ 0.7787.

If we approximate W by Λ ∼ P(α). Then we need to set

α = np =
250

1000
=

1

4
.

In which case,

P [Λ = 0] = e−α
α0

0!
= e−α ≈ 0.7788

which is very close to the answer from direct calculation.
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