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1 Probability and You

Whether you like it or not, probabilities rule your life. If you have
ever tried to make a living as a gambler, you are painfully aware
of this, but even those of us with more mundane life stories are
constantly affected by these little numbers.

Example 1.1. Some examples from daily life where probability
calculations are involved are the determination of insurance premi-
ums, the introduction of new medications on the market, opinion
polls, weather forecasts, and DNA evidence in courts. Probabil-
ities also rule who you are. Did daddy pass you the X or the Y
chromosome? Did you inherit grandma’s big nose?

Meanwhile, in everyday life, many of us use probabilities in our
language and say things like “I’m 99% certain” or “There is a one-
in-a-million chance” or, when something unusual happens, ask the
rhetorical question “What are the odds?”. [15, p 1]

1.1 Randomness

1.2. Many clever people have thought about and debated what
randomness really is, and we could get into a long philosophical
discussion that could fill up a whole book. Let’s not. The French
mathematician Laplace (1749–1827) put it nicely:

“Probability is composed partly of our ignorance, partly
of our knowledge.”
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Inspired by Laplace, let us agree that you can use probabilities
whenever you are faced with uncertainty. [15, p 2]

1.3. Random phenomena arise because of [12]:

(a) our partial ignorance of the generating mechanism

(b) the laws governing the phenomena may be fundamentally ran-
dom (as in quantum mechanics; see also Ex. 1.7.)

(c) our unwillingness to carry out exact analysis because it is not
worth the trouble

Example 1.4. Communication Systems [18]: The essence of
communication is randomness.

(a) Random Source: The transmitter is connected to a random
source, the output of which the receiver cannot predict with
certainty.

• If a listener knew in advance exactly what a speaker
would say, and with what intonation he would say it,
there would be no need to listen!

(b) Noise: There is no communication problem unless the trans-
mitted signal is disturbed during propagation or reception in
a random way.

(c) Probability theory is used to evaluate the performance of com-
munication systems.

Example 1.5. Random numbers are used directly in the transmis-
sion and security of data over the airwaves or along the Internet.

(a) A radio transmitter and receiver could switch transmission
frequencies from moment to moment, seemingly at random,
but nevertheless in synchrony with each other.

(b) The Internet data could be credit-card information for a con-
sumer purchase, or a stock or banking transaction secured by
the clever application of random numbers.
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Example 1.6. Randomness is an essential ingredient in games of
all sorts, computer or otherwise, to make for unexpected action
and keen interest.

Example 1.7. On a more profound level, quantum physicists
teach us that everything is governed by the laws of probability.
They toss around terms like the Schrödinger wave equation and
Heisenberg’s uncertainty principle, which are much too difficult for
most of us to understand, but one thing they do mean is that the
fundamental laws of physics can only be stated in terms of proba-
bilities. And the fact that Newton’s deterministic laws of physics
are still useful can also be attributed to results from the theory of
probabilities. [15, p 2]

1.8. Most people have preconceived notions of randomness that
often differ substantially from true randomness. Truly random
data sets often have unexpected properties that go against intuitive
thinking. These properties can be used to test whether data sets
have been tampered with when suspicion arises. [17, p 191]

• [13, p 174]: “people have a very poor conception of random-
ness; they do not recognize it when they see it and they cannot
produce it when they try”

Example 1.9. Apple ran into an issue with the random shuffling
method it initially employed in its iPod music players: true ran-
domness sometimes produces repetition, but when users heard the
same song or songs by the same artist played back-to-back, they
believed the shuffling wasn’t random. And so the company made
the feature “less random to make it feel more random,” said Apple
founder Steve Jobs. [13, p 175]

1.2 Background on Some Frequently Used Examples

Probabilists love to play with coins and dice. We like the idea of
tossing coins, rolling dice, and drawing cards as experiments that
have equally likely outcomes.

1.10. Coin flipping or coin tossing is the practice of throwing
a coin in the air to observe the outcome.
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When a coin is tossed, it does not necessarily fall heads or
tails; it can roll away or stand on its edge. Nevertheless, we shall
agree to regard “heads” (H) and “tails” (T) as the only possible
outcomes of the experiment. [4, p 7]

• Typical experiment includes

◦ “Flip a coin N times. Observe the sequence of heads and
tails” or “Observe the number of heads.”

1.11. Historically, dice is the plural of die , but in modern stan-
dard English dice is used as both the singular and the plural. [Ex-
cerpted from Compact Oxford English Dictionary.]

• Usually assume six-sided dice

• Usually observe the number of dots on the side facing up-
wards.

1.12. A complete set of cards is called a pack or deck.

(a) The subset of cards held at one time by a player during a
game is commonly called a hand.

(b) For most games, the cards are assembled into a deck, and
their order is randomized by shuffling.

(c) A standard deck of 52 cards in use today includes thirteen
ranks of each of the four French suits.

• The four suits are called spades (♠), clubs (♣), hearts
(♥), and diamonds (♦). The last two are red, the first
two black.

(d) There are thirteen face values (2, 3, . . . , 10, jack, queen, king,
ace) in each suit.

• Cards of the same face value are called of the same kind.

• “court” or face card: a king, queen, or jack of any suit.
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1.3 A Glimpse at Probability Theory

1.13. Probabilities are used in situations that involve random-
ness. A probability is a number used to describe how likely
something is to occur, and probability (without indefinite arti-
cle) is the study of probabilities. It is “the art of being certain
of how uncertain you are .” [15, p 2–4] If an event is certain
to happen, it is given a probability of 1. If it is certain not to
happen, it has a probability of 0. [7, p 66]

1.14. Probabilities can be expressed as fractions, as decimal num-
bers, or as percentages. If you toss a coin, the probability to get
heads is 1/2, which is the same as 0.5, which is the same as 50%.
There are no explicit rules for when to use which notation.

• In daily language, proper fractions are often used and often
expressed, for example, as “one in ten” instead of 1/10 (“one
tenth”). This is also natural when you deal with equally likely
outcomes.

• Decimal numbers are more common in technical and sci-
entific reporting when probabilities are calculated from data.
Percentages are also common in daily language and often with
“chance” replacing “probability.”

• Meteorologists, for example, typically say things like “there
is a 20% chance of rain.” The phrase “the probability of rain
is 0.2” means the same thing.

• When we deal with probabilities from a theoretical viewpoint,
we always think of them as numbers between 0 and 1, not as
percentages.

• See also 3.5.

[15, p 10]

Definition 1.15. Important terms [12]:

(a) An activity or procedure or observation is called a random
experiment if its outcome cannot be predicted precisely be-
cause the conditions under which it is performed cannot be
predetermined with sufficient accuracy and completeness.
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• The term “experiment” is to be construed loosely. We do
not intend a laboratory situation with beakers and test
tubes.

• Tossing/flipping a coin, rolling a dice, and drawing a card
from a deck are some examples of random experiments.

(b) A random experiment may have several separately identifiable
outcomes. We define the sample space Ω as a collection
of all possible (separately identifiable) outcomes/results/mea-
surements of a random experiment. Each outcome (ω) is an
element, or sample point, of this space.

• Rolling a dice has six possible identifiable outcomes
(1, 2, 3, 4, 5, and 6).

(c) Events are sets (or classes) of outcomes meeting some spec-
ifications.

• Any1 event is a subset of Ω.

• Intuitively, an event is a statement about the outcome(s)
of an experiment.

The goal of probability theory is to compute the probability of var-
ious events of interest. Hence, we are talking about a set function
which is defined on subsets of Ω.

Example 1.16. The statement “when a coin is tossed, the prob-
ability to get heads is l/2 (50%)” is a precise statement.

(a) It tells you that you are as likely to get heads as you are to
get tails.

(b) Another way to think about probabilities is in terms of aver-
age long-term behavior. In this case, if you toss the coin
repeatedly, in the long run you will get roughly 50% heads
and 50% tails.

1For our class, it may be less confusing to allow event A to be any collection of outcomes
(, i.e. any subset of Ω).

In more advanced courses, when we deal with uncountable Ω, we limit our interest to only
some subsets of Ω. Technically, the collection of these subsets must form a σ-algebra.
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Although the outcome of a random experiment is unpredictable,
there is a statistical regularity about the outcomes. What you
cannot be certain of is how the next toss will come up. [15, p 4]

1.17. Long-run frequency interpretation : If the probability
of an event A in some actual physical experiment is p, then we
believe that if the experiment is repeated independently over and
over again, then a theorem called the law of large numbers
(LLN) states that, in the long run, the event A will happen ap-
proximately 100p% of the time. In other words, if we repeat an
experiment a large number of times then the fraction of times the
event A occurs will be close to P (A).

Example 1.18. Return to the coin tossing experiment in Ex. 1.16:

Definition 1.19. Let A be one of the events of a random exper-
iment. If we conduct a sequence of n independent trials of this
experiment, and if the event A occurs in N(A, n) out of these n
trials, then the fraction

is called the relative frequency of the event A in these n trials.

1.20. The long-run frequency interpretation mentioned in 1.17
can be restated as

P (A) “=” lim
n→∞

N(A, n)

n
.

1.21. Another interpretation: The probability of an outcome can
be interpreted as our subjective probability, or degree of belief,
that the outcome will occur. Different individuals will no doubt
assign different probabilities to the same outcomes.
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1.22. In terms of practical range, probability theory is comparable
with geometry ; both are branches of applied mathematics that
are directly linked with the problems of daily life. But while pretty
much anyone can call up a natural feel for geometry to some extent,
many people clearly have trouble with the development of a good
intuition for probability.

• Probability and intuition do not always agree. In no other
branch of mathematics is it so easy to make mistakes
as in probability theory.

• Students facing difficulties in grasping the concepts of prob-
ability theory might find comfort in the idea that even the
genius Leibniz, the inventor of differential and integral cal-
culus along with Newton, had difficulties in calculating the
probability of throwing 11 with one throw of two dice. (See
Ex. 3.4.)

[17, p 4]
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2 Review of Set Theory

Example 2.1. Let Ω = {1, 2, 3, 4, 5, 6}

2.2. Venn diagram is very useful in set theory. It is often used
to portray relationships between sets. Many identities can be read
out simply by examining Venn diagrams.

2.3. If ω is a member of a set A, we write ω ∈ A.

Definition 2.4. Basic set operations (set algebra)

• Complementation: Ac = {ω : ω /∈ A}.

• Union: A ∪B = {ω : ω ∈ A or ω ∈ B}

◦ Here “or”is inclusive; i.e., if ω ∈ A, we permit ω to belong
either to A or to B or to both.

• Intersection: A ∩B = {ω : ω ∈ A and ω ∈ B}

◦ Hence, ω ∈ A if and only if ω belongs to both A and B.

◦ A ∩B is sometimes written simply as AB.

• The set difference operation is defined by B \A = B ∩Ac.

◦ B \ A is the set of ω ∈ B that do not belong to A.

◦ When A ⊂ B, B \A is called the complement of A in B.
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2.5. Basic Set Identities:

• Idempotence: (Ac)c = A

• Commutativity (symmetry):

A ∪B = B ∪ A , A ∩B = B ∩ A

• Associativity:

◦ A ∩ (B ∩ C) = (A ∩B) ∩ C
◦ A ∪ (B ∪ C) = (A ∪B) ∪ C

• Distributivity

◦ A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

◦ A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

• de Morgan laws

◦ (A ∪B)c = Ac ∩Bc

◦ (A ∩B)c = Ac ∪Bc

2.6. Disjoint Sets:

• Sets A and B are said to be disjoint (A ⊥ B) if and only if
A ∩B = ∅. (They do not share member(s).)

• A collection of sets (Ai : i ∈ I) is said to be pairwise dis-
joint or mutually exclusive [8, p. 9] if and only if Ai∩Aj = ∅
when i 6= j.

Example 2.7. Sets A, B, and C are pairwise disjoint if

2.8. For a set of sets, to avoid the repeated use of the word “set”,
we will call it a collection/class/family of sets.
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Definition 2.9. Given a set S, a collection Π = (Aα : α ∈ I) of
subsets2 of S is said to be a partition of S if

(a) S =
⋃
Aα∈I and

(b) For all i 6= j, Ai ⊥ Aj (pairwise disjoint).

Remarks:

• The subsets Aα, α ∈ I are called the parts of the partition.

• A part of a partition may be empty, but usually there is no
advantage in considering partitions with one or more empty
parts.

Example 2.10 (Slide:maps).

Example 2.11. Let E be the set of students taking ECS315

Definition 2.12. The cardinality (or size) of a collection or set
A, denoted |A|, is the number of elements of the collection. This
number may be finite or infinite.

• A finite set is a set that has a finite number of elements.

• A set that is not finite is called infinite.

• Countable sets:
2In this case, the subsets are indexed or labeled by α taking values in an index or label

set I
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◦ Empty set and finite sets are automatically countable.

◦ An infinite set A is said to be countable if the elements
of A can be enumerated or listed in a sequence: a1, a2, . . . .

• A singleton is a set with exactly one element.

◦ Ex. {1.5}, {.8}, {π}.
◦ Caution: Be sure you understand the difference between

the outcome -8 and the event {−8}, which is the set con-
sisting of the single outcome −8.

2.13. We can categorize sets according to their cardinality:

Example 2.14. Examples of countably infinite sets:

• the set N = {1, 2, 3, . . . } of natural numbers,

• the set {2k : k ∈ N} of all even numbers,

• the set {2k − 1 : k ∈ N} of all odd numbers,

• the set Z of integers,
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Set Theory Probability Theory
Set Event

Universal set Sample Space (Ω)
Element Outcome (ω)

Table 1: The terminology of set theory and probability theory

Event Language
A A occurs
Ac A does not occur

A ∪B Either A or B occur
A ∩B Both A and B occur

Table 2: Event Language

Example 2.15. Example of uncountable sets3:

• R = (−∞,∞)

• interval [0, 1]

• interval (0, 1]

• (2, 3) ∪ [5, 7)

Definition 2.16. Probability theory renames some of the termi-
nology in set theory. See Table 1 and Table 2.

• Sometimes, ω’s are called states, and Ω is called the state
space.

2.17. Because of the mathematics required to determine proba-
bilities, probabilistic methods are divided into two distinct types,
discrete and continuous. A discrete approach is used when the
number of experimental outcomes is finite (or infinite but count-
able). A continuous approach is used when the outcomes are con-
tinuous (and therefore infinite). It will be important to keep in
mind which case is under consideration since otherwise, certain
paradoxes may result.

3We use a technique called diagonal argument to prove that a set is not countable and
hence uncountable.
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3 Classical Probability

Classical probability, which is based upon the ratio of the number
of outcomes favorable to the occurrence of the event of interest to
the total number of possible outcomes, provided most of the prob-
ability models used prior to the 20th century. It is the first type
of probability problems studied by mathematicians, most notably,
Frenchmen Fermat and Pascal whose 17th century correspondence
with each other is usually considered to have started the system-
atic study of probabilities. [15, p 3] Classical probability remains
of importance today and provides the most accessible introduction
to the more general theory of probability.

Definition 3.1. Given a finite sample space Ω, the classical
probability of an event A is

P (A) =
|A|
|Ω|

(1)

[6, Defn. 2.2.1 p 58]. In traditional language, a probability is
a fraction in which the bottom represents the number of possi-
ble outcomes, while the number on top represents the number of
outcomes in which the event of interest occurs.

• Assumptions: When the following are not true, do not calcu-
late probability using (1).

◦ Finite Ω: The number of possible outcomes is finite.

◦ Equipossibility: The outcomes have equal probability of
occurrence.

• The bases for identifying equipossibility were often

◦ physical symmetry (e.g. a well-balanced dice, made of
homogeneous material in a cubical shape) or

◦ a balance of information or knowledge concerning the var-
ious possible outcomes.

• Equipossibility is meaningful only for finite sample space, and,
in this case, the evaluation of probability is accomplished
through the definition of classical probability.
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• We will NOT use this definition beyond this section. We will
soon introduce a formal definition in Section 5.

• In many problems, when the finite sample space does not
contain equally likely outcomes, we can redefine the sample
space to make the outcome equipossible.

Example 3.2 (Slide). In drawing a card from a deck, there are 52
equally likely outcomes, 13 of which are diamonds. This leads to
a probability of 13/52 or 1/4.

3.3. Basic properties of classical probability: From Definition 3.1,
we can easily verified4 the properties below.

• P (A) ≥ 0

• P (Ω) = 1

• P (∅) = 0

• P (Ac) = 1− P (A)

• P (A ∪ B) = P (A) + P (B)− P (A ∩ B) which comes directly
from

|A ∪B| = |A|+ |B| − |A ∩B|.

• A ⊥ B ⇒ P (A ∪B) = P (A) + P (B)

• Suppose Ω = {ω1, . . . , ωn} and P ({ωi}) = 1
n . Then P (A) =∑

ω∈A
P ({ω}).

◦ The probability of an event is equal to the sum of the
probabilities of its component outcomes because outcomes
are mutually exclusive

4Because we will not rely on Definition 3.1 beyond this section, we will not worry about
how to prove these properties. In Section 5, we will prove the same properties in a more
general setting.
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Example 3.4 (Slides). When rolling two dice, there are 36 (equiprob-
able) possibilities.

P [sum of the two dice = 5] = 4/36.

Though one of the finest minds of his age, Leibniz was not
immune to blunders: he thought it just as easy to throw 12 with
a pair of dice as to throw 11. The truth is...

P [sum of the two dice = 11] =

P [sum of the two dice = 12] =

Definition 3.5. In the world of gambling, probabilities are often
expressed by odds. To say that the odds are n:1 against the event
A means that it is n times as likely that A does not occur than
that it occurs. In other words, P (Ac) = nP (A) which implies
P (A) = 1

n+1 and P (Ac) = n
n+1 .

“Odds” here has nothing to do with even and odd numbers.
The odds also mean what you will win, in addition to getting your
stake back, should your guess prove to be right. If I bet $1 on a
horse at odds of 7:1, I get back $7 in winnings plus my $1 stake.
The bookmaker will break even in the long run if the probability
of that horse winning is 1/8 (not 1/7). Odds are “even” when they
are 1:1 - win $1 and get back your original $1. The corresponding
probability is 1/2.

3.6. It is important to remember that classical probability relies
on the assumption that the outcomes are equally likely.

Example 3.7. Mistake made by the famous French mathemati-
cian Jean Le Rond d’Alembert (18th century) who is an author of
several works on probability:

“The number of heads that turns up in those two tosses can
be 0, 1, or 2. Since there are three outcomes, the chances of each
must be 1 in 3.”
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4 Enumeration / Combinatorics / Counting

There are many probability problems, especially those concerned
with gambling, that can ultimately be reduced to questions about
cardinalities of various sets. Combinatorics is the study of sys-
tematic counting methods, which we will be using to find the car-
dinalities of various sets that arise in probability.

4.1 Four Principles

4.1. Addition Principle (Rule of sum):

• When there are m cases such that the ith case has ni options,
for i = 1, . . . ,m, and no two of the cases have any options in
common, the total number of options is n1 + n2 + · · ·+ nm.

• In set-theoretic terms, suppose that a finite set S can be par-
titioned5 into (pairwise disjoint parts) S1, S2, . . . , Sm. Then,

|S| = |S1|+ |S2|+ · · ·+ |Sm|.
5The art of applying the addition principle is to partition the set S to be counted into

“manageable parts”; that is, parts which we can readily count. But this statement needs to
be qualified. If we partition S into too many parts, then we may have defeated ourselves.
For instance, if we partition S into parts each containing only one element, then applying the
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In words, if you can count the number of elements in all of
the parts of a partition of S, then |S| is simply the sum of the
number of elements in all the parts.

Example 4.2. We may find the number of people living in a coun-
try by adding up the number from each province/state.

Example 4.3. [1, p 28] Suppose we wish to find the number of
different courses offered by SIIT. We partition the courses accord-
ing to the department in which they are listed. Provided there is
no cross-listing (cross-listing occurs when the same course is listed
by more than one department), the number of courses offered by
SIIT equals the sum of the number of courses offered by each de-
partment.

Example 4.4. [1, p 28] A student wishes to take either a mathe-
matics course or a biology course, but not both. If there are four
mathematics courses and three biology courses for which the stu-
dent has the necessary prerequisites, then the student can choose
a course to take in 4 + 3 = 7 ways.

Example 4.5. Let A, B, and C be finite sets. How many triples
are there of the form (a,b,c), where a ∈ A, b ∈ B, c ∈ C?

4.6. Tree diagrams: When a set can be constructed in several
steps or stages, we can represent each of the n1 ways of completing
the first step as a branch of a tree. Each of the ways of completing
the second step can be represented as n2 branches starting from

addition principle is the same as counting the number of parts, and this is basically the same
as listing all the objects of S. Thus, a more appropriate description is that the art of applying
the addition principle is to partition the set S into not too many manageable parts.[1, p 28]
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the ends of the original branches, and so forth. The size of the set
then equals the number of branches in the last level of the tree,
and this quantity equals

n1 × n2 × · · ·

4.7. Multiplication Principle (Rule of product):

• When a procedure/operation can be broken down into m
steps,
such that there are n1 options for step 1,
and such that after the completion of step i−1 (i = 2, . . . ,m)
there are ni options for step i (for each way of completing step
i− 1),
the number of ways of performing the procedure is n1n2 · · ·nm.

• In set-theoretic terms, if sets S1, S2, . . . , Sm are finite, then
|S1 × S2 × · · · × Sm| = |S1| × |S2| × · · · × |Sm|.

• For m finite sets A1, A2, . . . , Am, there are |A1| × |A2| × · · · ×
|Am| m-tuples of the form (a1, a2, . . . , am) where each ai ∈ Ai.

Example 4.8. Suppose that a deli offers three kinds of bread,
three kinds of cheese, four kinds of meat, and two kinds of mustard.
How many different meat and cheese sandwiches can you make?

First choose the bread. For each choice of bread, you then
have three choices of cheese, which gives a total of 3 × 3 = 9
bread/cheese combinations (rye/swiss, rye/provolone, rye/ched-
dar, wheat/swiss, wheat/provolone ... you get the idea). Then
choose among the four kinds of meat, and finally between the
two types of mustard or no mustard at all. You get a total of
3× 3× 4× 3 = 108 different sandwiches.

Suppose that you also have the choice of adding lettuce, tomato,
or onion in any combination you want. This choice gives another
2 x 2 x 2 = 8 combinations (you have the choice “yes” or “no”
three times) to combine with the previous 108, so the total is now
108× 8 = 864.

That was the multiplication principle. In each step you have
several choices, and to get the total number of combinations, mul-
tiply. It is fascinating how quickly the number of combinations
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grow. Just add one more type of bread, cheese, and meat, respec-
tively, and the number of sandwiches becomes 1,920. It would take
years to try them all for lunch. [15, p 33]

Example 4.9 (Slides). In 1961, Raymond Queneau, a French poet
and novelist, wrote a book called One Hundred Thousand Billion
Poems. The book has ten pages, and each page contains a sonnet,
which has 14 lines. There are cuts between the lines so that each
line can be turned separately, and because all lines have the same
rhyme scheme and rhyme sounds, any such combination gives a
readable sonnet. The number of sonnets that can be obtained in
this way is thus 1014 which is indeed a hundred thousand billion.
Somebody has calculated that it would take about 200 million
years of nonstop reading to get through them all. [15, p 34]

Example 4.10. There are 2n binary strings/sequences of length
n.

Example 4.11. For a finite set A, the cardinality of its power set
2A is

|2A| = 2|A|.

Example 4.12. (Slides) Jack is so busy that he’s always throwing
his socks into his top drawer without pairing them. One morning
Jack oversleeps. In his haste to get ready for school, (and still a
bit sleepy), he reaches into his drawer and pulls out 2 socks. Jack
knows that 4 blue socks, 3 green socks, and 2 tan socks are in his
drawer.

(a) What are Jack’s chances that he pulls out 2 blue socks to
match his blue slacks?
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(b) What are the chances that he pulls out a pair of matching
socks?

Example 4.13. [1, p 29–30] Determine the number of positive
integers that are factors of the number

34 × 52 × 117 × 138.

The numbers 3,5,11, and 13 are prime numbers. By the funda-
mental theorem of arithmetic, each factor is of the form

3i × 5j × 11k × 13`,

where 0 ≤ i ≤ 4, 0 ≤ j ≤ 2, 0 ≤ k ≤ 7, and 0 ≤ ` ≤ 8. There are
five choices for i, three for j, eight for k, and nine for `. By the
multiplication principle, the number of factors is

5× 3× 8× 9 = 1080.

4.14. Subtraction Principle : Let A be a set and let S be a
larger set containing A. Then

|A| = |S| − |S \ A|

• When S is the same as Ω, we have |A| = |Ω| − |Ac|

• Using the subtraction principle makes sense only if it is easier
to count the number of objects in S and in S \ A than to
count the number of objects in A.

Example 4.15. Chevalier de Mere’s Scandal of Arithmetic:

Which is more likely, obtaining at least one six in 4 tosses
of a fair dice (event A), or obtaining at least one double
six in 24 tosses of a pair of dice (event B)?
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We have

P (A) =
64 − 54

64
= 1−

(
5

6

)4

≈ .518

and

P (B) =
3624 − 3524

3624 = 1−
(

35

36

)24

≈ .491.

Therefore, the first case is more probable.
Remark 1: Probability theory was originally inspired by gam-

bling problems. In 1654, Chevalier de Mere invented a gambling
system which bet even money6 on event B above. However, when
he began losing money, he asked his mathematician friend Pas-
cal to analyze his gambling system. Pascal discovered that the
Chevalier’s system would lose about 51 percent of the time. Pas-
cal became so interested in probability and together with another
famous mathematician, Pierre de Fermat, they laid the foundation
of probability theory. [U-X-L Encyclopedia of Science]

Remark 2: de Mere originally claimed to have discovered a
contradiction in arithmetic. De Mere correctly knew that it was
advantageous to wager on occurrence of event A, but his experience
as gambler taught him that it was not advantageous to wager on
occurrence of event B. He calculated P (A) = 1/6 + 1/6 + 1/6 +
1/6 = 4/6 and similarly P (B) = 24 × 1/36 = 24/36 which is
the same as P (A). He mistakenly claimed that this evidenced a
contradiction to the arithmetic law of proportions, which says that
4
6 should be the same as 24

36 . Of course we know that he could not
simply add up the probabilities from each tosses. (By De Meres
logic, the probability of at least one head in two tosses of a fair
coin would be 2× 0.5 = 1, which we know cannot be true). [17, p
3]

4.16. Division Principle (Rule of quotient): When a finite
set S is partitioned into equal-sized parts of m elements each, there
are |S|m parts.

6Even money describes a wagering proposition in which if the bettor loses a bet, he or she
stands to lose the same amount of money that the winner of the bet would win.
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4.2 Four Kinds of Counting Problems

4.17. Choosing objects from a collection is called sampling, and
the chosen objects are known as a sample. The four kinds of
counting problems are [8, p 34]:

(a) Ordered sampling of r out of n items with replacement: nr;

(b) Ordered sampling of r ≤ n out of n items without replace-
ment: (n)r;

(c) Unordered sampling of r ≤ n out of n items without replace-
ment:

(
n
r

)
;

(d) Unordered sampling of r out of n items with replacement:(
n+r−1

r

)
.

• See 4.33 for “bars and stars” argument.

Many counting problems can be simplified/solved by realizing
that they are equivalent to one of these counting problems.

4.18. Ordered Sampling: Given a set of n distinct items/objects,
select a distinct ordered7 sequence (word) of length r drawn from
this set.

(a) Ordered sampling with replacement : µn,r = nr

• Ordered sampling of r out of n items with replacement.

• The “with replacement” part means “an object can be
chosen repeatedly.”

• Example: From a deck of n cards, we draw r cards with
replacement; i.e., we draw a card, make a note of it, put
the card back in the deck and re-shuffle the deck before
choosing the next card. How many different sequences of
r cards can be drawn in this way? [8, Ex. 1.30]

7Different sequences are distinguished by the order in which we choose objects.
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(b) Ordered sampling without replacement :

(n)r =
r−1∏
i=0

(n− i) =
n!

(n− r)!

= n · (n− 1) · · · (n− (r − 1))︸ ︷︷ ︸
r terms

; r ≤ n

• Ordered sampling of r ≤ n out of n items without re-
placement.

• The “without replacement” means “once we choose an
object, we remove that object from the collection and we
cannot choose it again.”

• In Excel, use PERMUT(n,r).

• Sometimes referred to as “the number of possible r-permutations
of n distinguishable objects”

• Example: The number of sequences8 of size r drawn from
an alphabet of size n without replacement.

(3)2 = 3 × 2 = 6 is the number of sequences of size 2
drawn from an alphabet of size 3 without replacement.

Suppose the alphabet set is {A, B, C}. We can list all
sequences of size 2 drawn from {A, B, C} without re-
placement:

A B
A C
B A
B C
C A
C B

• Example: From a deck of 52 cards, we draw a hand of 5
cards without replacement (drawn cards are not placed
back in the deck). How many hands can be drawn in this
way?

8Elements in a sequence are ordered.
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• For integers r, n such that r > n, we have (n)r = 0.

• We define (n)0 = 1. (This makes sense because we usually
take the empty product to be 1.)

• (n)1 = n

• (n)r = (n−(r−1))(n)r−1. For example, (7)5 = (7−4)(7)4.

• (1)r =

{
1, if r = 1
0, if r > 1

• Extended definition: The definition in product form

(n)r =
r−1∏
i=0

(n− i) = n · (n− 1) · · · (n− (r − 1))︸ ︷︷ ︸
r terms

can be extended to any real number n and a non-negative
integer r.

Example 4.19. (Slides) The Seven Card Hustle: Take five red
cards and two black cards from a pack. Ask your friend to shuffle
them and then, without looking at the faces, lay them out in a row.
Bet that them cant turn over three red cards. The probability that
they CAN do it is

Definition 4.20. For any integer n greater than 1, the symbol n!,
pronounced “n factorial,” is defined as the product of all positive
integers less than or equal to n.

(a) 0! = 1! = 1

(b) n! = n(n− 1)!

(c) n! =
∞∫
0

e−ttndt

(d) Computation:
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(i) MATLAB: Use factorial(n). Since double precision num-
bers only have about 15 digits, the answer is only accurate
for n ≤ 21. For larger n, the answer will have the right
magnitude, and is accurate for the first 15 digits.

(ii) Google’s web search box built-in calculator: Use n!

(e) Approximation: Stirling’s Formula [5, p. 52]:

n! ≈
√

2πnnne−n =
(√

2πe
)
e(n+ 1

2) ln(ne ). (2)

In some references, the sign ≈ is replaced by ∼ to emphasize
that the ratio of the two sides converges to unity as n→∞.

4.21. Factorial and Permutation : The number of arrange-
ments (permutations) of n ≥ 0 distinct items is (n)n = n!.

• Meaning: The number of ways that n distinct objects can be
ordered.

◦ A special case of ordered sampling without replacement
where r = n.

• In MATLAB, use perms(v), where v is a row vector of length
n, to creates a matrix whose rows consist of all possible per-
mutations of the n elements of v. (So the matrix will contain
n! rows and n columns.)

Example 4.22. In MATLAB, perms([3 4 7]) gives

7 4 3
7 3 4
4 7 3
4 3 7
3 4 7
3 7 4
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Similarly, perms(’abcd’) gives

dcba dcab dbca dbac dabc dacb
cdba cdab cbda cbad cabd cadb
bcda bcad bdca bdac badc bacd
acbd acdb abcd abdc adbc adcb

Example 4.23. (Slides) Finger-Smudge on Touch-Screen Devices

Example 4.24. (Slides) Probability of coincidence birthday : Prob-
ability that there is at least two people who have the same birth-
day9 in a group of r persons:

Classical Probability 
1) Birthday Paradox: In a group of 23 randomly selected people, the probability that 

at least two will share a birthday (assuming birthdays are equally likely to occur 
on any given day of the year) is about 0.5. See also (3). 
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Figure 1: pu(n, r): The probability of the event that at least one element appears
twice in random sample of size r with replacement is taken from a population
of n elements.

Example 4.25. It is surprising to see how quickly the probability
in Example 4.24 approaches 1 as r grows larger.

9We ignore February 29 which only comes in leap years.
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Birthday Paradox : In a group of 23 randomly selected peo-
ple, the probability that at least two will share a birthday (assum-
ing birthdays are equally likely to occur on any given day of the
year10) is about 0.5.

• At first glance it is surprising that the probability of 2 people
having the same birthday is so large11, since there are only 23
people compared with 365 days on the calendar. Some of the
surprise disappears if you realize that there are

(
23
2

)
= 253

pairs of people who are going to compare their birthdays. [3,
p. 9]

Example 4.26. Another variant of the birthday coincidence para-
dox: The group size must be at least 253 people if you want a
probability > 0.5 that someone will have the same birthday as
you. [3, Ex. 1.13] (The probability is given by 1−

(
364
365

)r
.)

• A naive (but incorrect) guess is that d365/2e = 183 people
will be enough. The “problem” is that many people in the
group will have the same birthday, so the number of different
birthdays is smaller than the size of the group.

• On late-night television’s The Tonight Show with Johnny Car-
son, Carson was discussing the birthday problem in one of his
famous monologues. At a certain point, he remarked to his
audience of approximately 100 people: “Great! There must

10In reality, birthdays are not uniformly distributed. In which case, the probability of a
match only becomes larger for any deviation from the uniform distribution. This result can
be mathematically proved. Intuitively, you might better understand the result by thinking of
a group of people coming from a planet on which people are always born on the same day.

11In other words, it was surprising that the size needed to have 2 people with the same
birthday was so small.
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be someone here who was born on my birthday!” He was off
by a long shot. Carson had confused two distinctly different
probability problems: (1) the probability of one person out of
a group of 100 people having the same birth date as Carson
himself, and (2) the probability of any two or more people out
of a group of 101 people having birthdays on the same day.
[17, p 76]

4.27. Now, let’s revisit ordered sampling of r out of n different
items without replacement. This is also called the number of pos-
sible r-permutations of n different items. One way to look at the
sampling is to first consider the n! permutations of the n items.
Now, use only the first r positions. Because we do not care about
the last n−r positions, we will group the permutations by the first
r positions. The size of each group will be the number of possible
permutations of the n− r items that has not already been used in
the first r positions. So, each group will contain (n− r)! members.
By the division principle, the number of groups is n!/(n− r)!.
4.28. The number of permutations of n = n1 + n2 + · · · + nr

objects of which n1 are of one type, n2 are of one type, n2 are of
second type, . . . , and nr are of an rth type is

n!

n1!n2! · · ·nr!
.

Example 4.29. The number of permutations of AABC

Example 4.30. Bar Codes: A part is labeled by printing with
four thick lines, three medium lines, and two thin lines. If each
ordering of the nine lines represents a different label, how many
different labels can be generated by using this scheme?

4.31. Binomial coefficient :(
n

r

)
=

(n)r
r!

=
n!

(n− r)!r!
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(a) Read “n choose r”.

(b) Meaning:

(i) Unordered sampling of r ≤ n out of n distinct items
without replacement

(ii) The number of subsets of size r that can be formed from
a set of n elements (without regard to the order of selec-
tion).

(iii) The number of combinations of n objects selected r at a
time.

(iv) the number of r-combinations of n objects.

(v) The number of (unordered) sets of size r drawn from an
alphabet of size n without replacement.

(c) Computation:

(i) MATLAB:

• nchoosek(n,r), where n and r are nonnegative inte-
gers, returns

(
n
r

)
.

• nchoosek(v,r), where v is a row vector of length n,
creates a matrix whose rows consist of all possible
combinations of the n elements of v taken r at a time.
The matrix will contains

(
n
r

)
rows and r columns.

◦ Example: nchoosek(’abcd’,2) gives

ab
ac
ad
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bc
bd
cd

(ii) Excel: combin(n,r)

(iii) Mathcad: combin(n,r)

(iv) Maple:
(
n
r

)
(v) Google’s web search box built-in calculator: n choose r

(d) Reflection property:
(
n
r

)
=
(
n
n−r
)
.

(e)
(
n
n

)
=
(
n
0

)
= 1.

(f)
(
n
1

)
=
(
n
n−1

)
= n.

(g)
(
n
r

)
= 0 if n < r or r is a negative integer.

(h) max
r

(
n
r

)
=
(

n

bn+1
2 c
)
.

Example 4.32. In bridge, 52 cards are dealt to four players;
hence, each player has 13 cards. The order in which the cards
are dealt is not important, just the final 13 cards each player ends
up with. How many different bridge games can be dealt? (Answer:
53,644,737,765,488,792,839,237,440,000)

4.33. The bars and stars argument:

• Example: Find all nonnegative integers x1, x2, x3 such that

x1 + x2 + x3 = 3.
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0 + 0 + 3 1 1 1
0 + 1 + 2 1 1 1
0 + 2 + 1 1 1 1
0 + 3 + 0 1 1 1
1 + 0 + 2 1 1 1
1 + 1 + 1 1 1 1
1 + 2 + 0 1 1 1
2 + 0 + 1 1 1 1
2 + 1 + 0 1 1 1
3 + 0 + 0 1 1 1

• There are
(
n+r−1

r

)
=
(
n+r−1
n−1

)
distinct n-tuples (x1, x2, . . . , xn)

of nonnegative integers such that x1 + x2 + · · ·+ xn = r. We
use n− 1 bars to separate r 1’s.

(a) Suppose we further require that the xi are strictly positive
(xi ≥ 1), then there are

(
r−1
n−1

)
solutions.

(b) Extra Lower-bound Requirement : Suppose we fur-
ther require that xi ≥ ai where the ai are some given
nonnegative integers, then the number of solution is(

r − (a1 + a2 + · · ·+ an) + n− 1

n− 1

)
.

Note that here we work with equivalent problem: y1 +
y2 + · · ·+ yn = r −

∑n
i=1 ai where yi ≥ 0.

• Consider the distribution of r = 10 indistinguishable balls
into n = 5 distinguishable cells. Then, we only concern with
the number of balls in each cell. Using n − 1 = 4 bars, we
can divide r = 10 stars into n = 5 groups. For example,
****|***||**|* would mean (4,3,0,2,1). In general, there are(
n+r−1

r

)
ways of arranging the bars and stars.

4.34. Unordered sampling with replacement : There are
n items. We sample r out of these n items with replacement.
Because the order in the sequences is not important in this kind
of sampling, two samples are distinguished by the number of each
item in the sequence. In particular, Suppose r letters are drawn
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with replacement from a set {a1, a2, . . . , an}. Let xi be the number
of ai in the drawn sequence. Because we sample r times, we know
that, for every sample, x1 + x2 + · · ·xn = r where the xi are non-
negative integers. Hence, there are

(
n+r−1

r

)
possible unordered

samples with replacement.

4.3 Binomial Theorem and Multinomial Theorem

4.35. Binomial theorem : Sometimes, the number
(
n
r

)
is called

a binomial coefficient because it appears as the coefficient of
xryn−r in the expansion of the binomial (x+y)n. More specifically,
for any positive integer n, we have,

(x+ y)n =
n∑
r=0

(
n

r

)
xryn−r (3)

(Slide) To see how we get (3), let’s consider a smaller case of
n = 3. The expansion of (x+y)3 can be found using combinatorial
reasoning instead of multiplying the three terms out. When (x +
y)3 = (x+y)(x+y)(x+y) is expanded, all products of a term in the
first sum, a term in the second sum, and a term in the third sum
are added. Terms of the form x3, x2y, xy2, and y3 arise. To obtain
a term of the form x3, an x must be chosen in each of the sums,
and this can be done in only one way. Thus, the x3 term in the
product has a coefficient of 1. To obtain a term of the form x2y,
an x must be chosen in two of the three sums (and consequently
a y in the other sum). Hence. the number of such terms is the
number of 2-combinations of three objects, namely,

(
3
2

)
. Similarly,

the number of terms of the form xy2 is the number of ways to pick
one of the three sums to obtain an x (and consequently take a y
from each of the other two terms). This can be done in

(
3
1

)
ways.

Finally, the only way to obtain a y3 term is to choose the y for
each of the three sums in the product, and this can be done in
exactly one way. Consequently. it follows that

(x+ y)3 = x3 + 3x2y + 3xy2 + y3.

Now, let’s state a combinatorial proof of the binomial theorem
(3). The terms in the product when it is expanded are of the form
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xryn−r for r = 0, 1, 2, . . . , n. To count the number of terms of the
form xryn−r, note that to obtain such a term it is necessary to
choose r xs from the n sums (so that the other n− r terms in the
product are ys). Therefore. the coefficient of xryn−r is

(
n
r

)
.

From (3), if we let x = y = 1, then we get another important
identity:

n∑
r=0

(
n

r

)
= 2n. (4)

4.36. Multinomial Counting : The multinomial coefficient(
n

n1 n2 · · · nr

)
is defined as

r∏
i=1

(
n−

i−1∑
k=0

nk

ni

)
=

(
n

n1

)
·
(
n− n1

n2

)
·
(
n− n1 − n2

n3

)
· · ·
(
nr
nr

)
=

n!
r∏
i=1

ni!
.

We have seen this before in (4.28). It is the number of ways that

we can arrange n =
r∑
i=1

ni tokens when having r types of symbols

and ni indistinguishable copies/tokens of a type i symbol.

4.37. Multinomial Theorem :

(x1 + . . .+ xr)
n =

∑ n!

i1!i2! · · · ir!
xi11 x

i2
2 · · ·xirr ,

where the sum ranges over all ordered r-tuples of integers i1, . . . , ir
satisfying the following conditions:

i1 ≥ 0, . . . , ir ≥ 0, i1 + i2 + · · ·+ ir = n.

When r = 2 this reduces to the binomial theorem.
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4.38. Further reading on combinatorial ideas: the pigeon-hole

principle, inclusion-exclusion principle, generating functions and
recurrence relations, and flows in networks.

4.4 Famous Example: Galileo and the Duke of Tuscany

Example 4.39. When you toss three dice, the chance of the sum
being 10 is greater than the chance of the sum being 9.

• The Grand Duke of Tuscany “ordered” Galileo to explain a
paradox arising in the experiment of tossing three dice [2]:

“Why, although there were an equal number of 6 par-
titions of the numbers 9 and 10, did experience state
that the chance of throwing a total 9 with three fair
dice was less than that of throwing a total of 10?”

• Partitions of sums 11, 12, 9 and 10 of the game of three fair
dice:

1+4+6=11 1+5+6=12 3+3+3=9 1+3+6=10
2+3+6=11 2+4+6=12 1+2+6=9 1+4+5=10
2+4+5=11 3+4+5=12 1+3+5=9 2+2+6=10
1+5+5=11 2+5+5=12 1+4+4=9 2+3+5=10
3+3+5=11 3+3+6=12 2+2+5=9 2+4+4=10
3+4+4=11 4+4+4=12 2+3+4=9 3+3+3=10

The partitions above are not equivalent. For example, from
the addenda 1, 2, 6, the sum 9 can come up in 3! = 6 different
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ways; from the addenda 2, 2, 5, the sum 9 can come up in
3!

2!1! = 3 different ways; the sum 9 can come up in only one
way from 3, 3, 3.

• Remarks : Let Xi be the outcome of the ith dice and Sn be
the sum X1 +X2 + · · ·+Xn.

(a) P [S3 = 9] = P [S3 = 12] = 25
63 < 27

63 = P [S3 = 10] =
P [S3 = 11]. Note that the difference between the two
probabilities is only 1

108 .

(b) The range of Sn is from n to 6n. So, there are 6n−n+1 =
5n+ 1 possible values.

(c) The pmf of Sn is symmetric around its expected value at
n+6n

2 = 7n
2 .

◦ P [Sn = m] = P [Sn = 7n−m].
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Figure 2: pmf of Sn for n = 3 and n = 4.

4.5 Application: Success Runs

Example 4.40. We are all familiar with “success runs” in many
different contexts. For example, we may be or follow a tennis
player and count the number of consecutive times the player’s first
serve is good. Or we may consider a run of forehand winners. A
basketball player may be on a “hot streak” and hit his or her
shots perfectly for a number of plays in row.
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In all the examples, whether you should or should not be amazed
by the observation depends on a lot of other information. There
may be perfectly reasonable explanations for any particular success
run. But we should be curious as to whether randomness could
also be a perfectly reasonable explanation. Could the hot streak
of a player simply be a snapshot of a random process, one that we
particularly like and therefore pay attention to?

In 1985, cognitive psychologists Amos Taversky and Thomas
Gilovich examined12 the shooting performance of the Philadelphia
76ers, Boston Celtics and Cornell University’s men’s basketball
team. They sought to discover whether a player’s previous shot
had any predictive effect on his or her next shot. Despite basketball
fans’ and players’ widespread belief in hot streaks, the researchers
found no support for the concept. (No evidence of nonrandom
behavior.) [13, p 178]

4.41. Academics call the mistaken impression that a random
streak is due to extraordinary performance the hot-hand fallacy.
Much of the work on the hot-hand fallacy has been done in the
context of sports because in sports, performance is easy to define
and measure. Also, the rules of the game are clear and definite,
data are plentiful and public, and situations of interest are repli-
cated repeatedly. Not to mention that the subject gives academics
a way to attend games and pretend they are working. [13, p 178]

Example 4.42. Suppose that two people are separately asked to
toss a fair coin 120 times and take note of the results. Heads is
noted as a “one” and tails as a “zero”. The following two lists of
compiled zeros and ones result

1 1 0 0 1 0 0 1 0 1 1 0 0 1 0 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0
0 1 0 1 0 1 1 0 1 1 0 0 1 1 0 1 1 1 0 1 0 0 1 0 0 1 1 0 1 0
0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 1 0 1 0 1 0 0 0 1
0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 0 1 0 1 1 0 0 1 0 0 1 1 0 1 1

and
12“The Hot Hand in Basketball: On the Misperception of Random Sequences”
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1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 0 0 1 1 0 0 1 1 0
1 0 1 0 0 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0 0 1 0 1 1 1 0 1 1 0
0 1 1 1 0 1 1 0 0 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0
0 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 1 1 0 1 0 1

One of the two individuals has cheated and has fabricated a list of
numbers without having tossed the coin. Which list is more likely
be the fabricated list? [17, Ex. 7.1 p 42–43]

The answer is later provided in Example 4.48.

Definition 4.43. A run is a sequence of more than one consecu-
tive identical outcomes, also known as a clump.

Definition 4.44. Let Rn represent the length of the longest run
of heads in n independent tosses of a fair coin. Let An(x) be the
set of (head/tail) sequences of length n in which the longest run
of heads does not exceed x. Let an(x) = ‖An(x)‖.

Example 4.45. If a fair coin is flipped, say, three times, we can
easily list all possible sequences:

HHH, HHT, HTH, HTT, THH, THT, TTH, TTT

and accordingly derive:

x P [R3 = x] a3(x)

0 1/8 1
1 4/8 4
2 2/8 7
3 1/8 8

4.46. Consider an(x). Note that if n ≤ x, then an(x) = 2n because
any outcome is a favorable one. (It is impossible to get more than
three heads in three coin tosses). For n > x, we can partition
An(x) by the position k of the first tail. Observe that k must be
≤ x + 1 otherwise we will have more than x consecutive heads in
the sequence which contradicts the definition of An(x). For each
k ∈ {1, 2, . . . , x+ 1}, the favorable sequences are in the form

HH . . . H︸ ︷︷ ︸
k−1 heads

T XX . . .X︸ ︷︷ ︸
n−k positions
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where, to keep the sequences in An(x), the last n − k positions13

must be in An−k(x). Thus,

an(x) =
x+1∑
k=1

an−k(x) for n > x.

In conclusion, we have

an(x) =

{ ∑x
j=0 an−j−1(x), n > x,

2n n ≤ x

[16]. The following MATLAB function calculates an(x)

function a = a nx(n,x)
a = [2.ˆ(1:x) zeros(1,n−x)];
a(x+1) = 1+sum(a(1:x));
for k = (x+2):n

a(k) = sum(a((k−1−x):(k−1)));
end
a = a(n);

4.47. Similar technique can be used to construct Bn(x) defined
as the set of sequences of length n in which the longest run of
heads and the longest run of tails do not exceed x. To check
whether a sequence is in Bn(x), first we convert it into sequence
of S and D by checking each adjacent pair of coin tosses in the
original sequence. S means the pair have same outcome and D
means they are different. This process gives a sequence of length
n− 1. Observe that a string of x− 1 consecutive S’s is equivalent
to a run of length x. This put us back to the earlier problem of
finding an(x) where the roles of H and T are now played by S and
D, respectively. (The length of the sequence changes from n to
n − 1 and the max run length is x − 1 for S instead of x for H.)
Hence, bn(x) = ‖Bn(x)‖ can be found by

bn(x) = 2an−1(x− 1)

[16].

13Strictly speaking, we need to consider the case when n = x+ 1 separately. In such case,
when k = x+ 1, we have A0(x). This is because the sequence starts with x heads, then a tail,
and no more space left. In which case, this part of the partition has only one element; so we
should define a0(x) = 1. Fortunately, for x ≥ 1, this is automatically satisfied in an(x) = 2n.
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Example 4.48. Continue from Example 4.42. We can check that
in 120 tosses of a fair coin, there is a very large probability that at
some point during the tossing process, a sequence of five or more
heads or five or more tails will naturally occur. The probability of
this is

2120 − b120(4)

2120
≈ 0.9865.

0.9865. In contrast to the second list, the first list shows no such
sequence of five heads in a row or five tails in a row. In the first
list, the longest sequence of either heads or tails consists of three
in a row. In 120 tosses of a fair coin, the probability of the longest
sequence consisting of three or less in a row is equal to

b120(3)

2120
≈ 0.000053,

which is extremely small indeed. Thus, the first list is almost
certainly a fake. Most people tend to avoid noting long sequences
of consecutive heads or tails. Truly random sequences do not share
this human tendency! [17, Ex. 7.1 p 42–43]
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5 Probability Foundations

Constructing the mathematical foundations of probability theory
has proven to be a long-lasting process of trial and error. The
approach consisting of defining probabilities as relative frequencies
in cases of repeatable experiments leads to an unsatisfactory theory.
The frequency view of probability has a long history that goes
back to Aristotle. It was not until 1933 that the great Russian
mathematician A. N. Kolmogorov (1903-1987) laid a satisfactory
mathematical foundation of probability theory. He did this by
taking a number of axioms as his starting point, as had been done
in other fields of mathematics. [17, p 223]

We will try to avoid several technical details14 15 in this class.
Therefore, the definition given below is not the “complete” defini-
tion. Some parts are modified or omitted to make the definition
easier to understand.

14To study formal definition of probability, we start with the probability space (Ω,A, P ).
Let Ω be an arbitrary space or set of points ω. Recall (from Definition 1.15) that, viewed
probabilistically, a subset of Ω is an event and an element ω of Ω is a sample point . Each
event is a collection of outcomes which are elements of the sample space Ω.

The theory of probability focuses on collections of events, called event σ-algebras, typ-
ically denoted by A (or F), that contain all the events of interest (regarding the random
experiment E) to us, and are such that we have knowledge of their likelihood of occurrence.
The probability P itself is defined as a number in the range [0, 1] associated with each event
in A.

15The class 2Ω of all subsets can be too large for us to define probability measures with
consistency, across all member of the class. (There is no problem when Ω is countable.)
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Definition 5.1. Kolmogorov’s Axioms for Probability [11]:
A probability measure16 is a real-valued set function17 that sat-
isfies

P1 Nonnegativity :
P (A) ≥ 0.

P2 Unit normalization :

P (Ω) = 1.

P3 Countable additivity or σ-additivity : For every countable
sequence (An)

∞
n=1 of disjoint events,

P

( ∞⋃
n=1

An

)
=

∞∑
n=1

P (An).

• The number P (A) is called the probability of the event A

• The entire sample space Ω is called the sure event or the
certain event.

• If an event A satisfies P (A) = 1, we say that A is an almost-
sure event.

• A support of P is any set A for which P (A) = 1.

From the three axioms18, we can derive many more properties
of probability measure. These properties are useful for calculating
probabilities.

16Technically, probability measure is defined on a σ-algebra A of Ω. The triple (Ω,A, P ) is
called a probability measure space , or simply a probability space

17A real-valued set function is a function the maps sets to real numbers.
18Remark: The axioms do not determine probabilities; the probabilities are assigned based

on our knowledge of the system under study. (For example, one approach is to base probability
assignments on the simple concept of equally likely outcomes.) The axioms enable us to easily
calculate the probabilities of some events from knowledge of the probabilities of other events.
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5.2. P (∅) = 0.

5.3. Finite additivity19: If A1, . . . , An are disjoint events, then

P

(
n⋃
i=1

Ai

)
=

n∑
i=1

P (Ai).

Special case when n = 2: Addition rule (Additivity)

If A ∩B = ∅, then P (A ∪B) = P (A) + P (B). (5)

19It is not possible to go backwards and use finite additivity to derive countable additivity
(P3).
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5.4. The probability of a finite or countable event equals the sum
of the probabilities of the outcomes in the event.

(a) In particular, if A is countable, e.g. A = {a1, a2, . . .}, then

P (A) =
∞∑
n=1

P ({an}).

(b) Similarly, if A is finite, e.g. A =
{
a1, a2, . . . , a|A|

}
, then

P (A) =

|A|∑
n=1

P ({an}).

• This greatly simplifies20 construction of probability measure.

Remark: Note again that the set A under consideration here
is finite or countably infinite. You can not apply the properties
above to uncountable set.21

20 Recall that a probability measure P is a set function that assigns number (probability) to
all set (event) in A. When Ω is countable (finite or countably infinite), we may let A = 2Ω =
the power set of the sample space. In other words, in this situation, it is possible to assign
probability value to all subsets of Ω.

To define P , it seems that we need to specify a large number of values. Recall that to
define a function g(x) you usually specify (in words or as a formula) the value of g(x) at all
possible x in the domain of g. The same task must be done here because we have a function
that maps sets in A to real numbers (or, more specifically, the interval [0, 1]). It seems that
we will need to explicitly specify P (A) for each set A in A. Fortunately, 5.4 implies that we
only need to define P for all the singletons (when Ω is countable).

21In Section ??, we will start talking about (absolutely) continuous random variables. In
such setting, we have P ({α}) = 0 for any α. However, it is possible to have an uncountable
set A with P (A) > 0. This does not contradict the properties that we discussed in 5.4. If A
is finite or countably infinite, we can still write

P (A) =
∑
α∈A

P ({α}) =
∑
α∈A

0 = 0.

For event A that is uncountable, the properties in 5.4 are not enough to evaluate P (A).
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Example 5.5. A random experiment can result in one of the out-
comes {a, b, c, d} with probabilities 0.1, 0.3, 0.5, and 0.1, respec-
tively. Let A denote the event {a, b}, B the event {b, c, d}, and C
the event {d}.

• P (A) =

• P (B) =

• P (C) =

• P (Ac) =

• P (A ∩B) =

• P (A ∩ C) =

5.6. Monotonicity : If A ⊂ B, then P (A) ≤ P (B)

Example 5.7. Let A be the event to roll a 6 and B the event
to roll an even number. Whenever A occurs, B must also occur.
However, B can occur without A occurring if you roll 2 or 4.

5.8. If A ⊂ B, then P (B \ A) = P (B)− P (A)

5.9. P (A) ∈ [0, 1].

5.10. P (A∩B) can not exceed P (A) and P (B). In other words,
“the composition of two events is always less probable than (or at
most equally probable to) each individual event.”
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Example 5.11 (Slides). Experiments by psychologists Kahneman
and Tversky.

Example 5.12. Let us consider Mrs. Boudreaux and Mrs. Thi-
bodeaux who are chatting over their fence when the new neighbor
walks by. He is a man in his sixties with shabby clothes and a
distinct smell of cheap whiskey. Mrs.B, who has seen him before,
tells Mrs. T that he is a former Louisiana state senator. Mrs. T
finds this very hard to believe. “Yes,” says Mrs.B, “he is a former
state senator who got into a scandal long ago, had to resign, and
started drinking.” “Oh,” says Mrs. T, “that sounds more likely.”
“No,” says Mrs. B, “I think you mean less likely.”

Strictly speaking, Mrs. B is right. Consider the following two
statements about the shabby man: “He is a former state senator”
and “He is a former state senator who got into a scandal long ago,
had to resign, and started drinking.” It is tempting to think that
the second is more likely because it gives a more exhaustive expla-
nation of the situation at hand. However, this reason is precisely
why it is a less likely statement. Note that whenever somebody
satisfies the second description, he must also satisfy the first but
not vice versa. Thus, the second statement has a lower probability
(from Mrs. Ts subjective point of view; Mrs. B of course knows
who the man is).

This example is a variant of examples presented in the book
Judgment under Uncertainty [10] by Economics Nobel laureate
Daniel Kahneman and co-authors Paul Slovic and Amos Tversky.
They show empirically how people often make similar mistakes
when they are asked to choose the most probable among a set of
statements. It certainly helps to know the rules of probability. A
more discomforting aspect is that the more you explain something
in detail, the more likely you are to be wrong. If you want to be
credible, be vague. [15, p 11–12]
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5.13. Complement Rule:

P (Ac) = 1− P (A) .

• “The probability that something does not occur can be com-
puted as one minus the probability that it does occur.”

• Named “probability’s Trick Number One” in [9]

5.14. Probability of a union (not necessarily disjoint):

P (A ∪B) = P (A) + P (B)− P (A ∩B)

• P (A ∪B) ≤ P (A) + P (B).

• Approximation: If P (A) � P (B) then we may approximate
P (A ∪B) by P (A).

Example 5.15 (Slides). Combining error probabilities from vari-
ous sources in DNA testing

Example 5.16. In his bestseller Innumeracy, John Allen Paulos
tells the story of how he once heard a local weatherman claim that
there was a 50% chance of rain on Saturday and a 50% chance of
rain on Sunday and thus a 100% chance of rain during the weekend.
Clearly absurd, but what is the error?

Answer: Faulty use of the addition rule (5)!
If we let A denote the event that it rains on Saturday and B

the event that it rains on Sunday, in order to use P (A ∪ B) =
P (A)+P (B), we must first confirm that A and B cannot occur at

49



the same time (P (A∩B) = 0). More generally, the formula that is
always holds regardless of whether P (A∩B) = 0 is given by 5.14:

P (A ∪B) = P (A) + P (B)− P (A ∩B).

The event “A∩B” describes the case in which it rains both days.
To get the probability of rain over the weekend, we now add 50%
and 50%, which gives 100%, but we must then subtract the prob-
ability that it rains both days. Whatever this is, it is certainly
more than 0 so we end up with something less than 100%, just like
common sense tells us that we should.

You may wonder what the weatherman would have said if the
chances of rain had been 75% each day. [15, p 12]

5.17. Probability of a union of three events:

P (A ∪B ∪ C) = P (A) + P (B) + P (C)

− P (A ∩B)− P (A ∩ C)− P (B ∩ C)

+ P (A ∩B ∩ C)

5.18. Two bounds:

(a) Subadditivity or Boole’s Inequality: If A1, . . . , An are
events, not necessarily disjoint, then

P

(
n⋃
i=1

Ai

)
≤

n∑
i=1

P (Ai).

(b) σ-subadditivity or countable subadditivity: If A1, A2,
. . . is a sequence of measurable sets, not necessarily disjoint,
then

P

( ∞⋃
i=1

Ai

)
≤

∞∑
i=1

P (Ai)

• This formula is known as the union bound in engineer-
ing.
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5.19. If a (finite) collection {B1, B2, . . . , Bn} is a partition of Ω,
then

P (A) =
n∑
i=1

P (A ∩Bi)

Similarly, if a (countable) collection {B1, B2, . . .} is a partition
of Ω, then

P (A) =
∞∑
i=1

P (A ∩Bi)

5.20. Connection to classical probability theory: Consider an
experiment with finite sample space Ω = {ω1, ω2, . . . , ωn} in which
each outcome ωi is equally likely. Note that n = |Ω|.

We must have

P ({ωi}) =
1

n
, ∀i.

Now, given any event finite22 event A, we can apply 5.4 to get

P (A) =
∑
ω∈A

P ({ω}) =
∑
ω∈A

1

n
=
|A|
n

=
|A|
|Ω|

.

We can then say that the probability theory we are working on
right now is an extension of the classical probability theory. When
the conditons/assumptions of classical probability theory are met,
then we get back the defining definition of classical classical prob-
ability. The extended part gives us ways to deal with situation
where assumptions of classical probability theory are not satisfied.

22In classical probability, the sample space is finite; therefore, any event is also finite.
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6 Event-based Independence and Conditional

Probability

Example 6.1. Roll a dice. . .
Example

3

 Roll a fair dice

 Sneak peek:
Figure 3: Conditional Probability Example: Sneak Peek

Example 6.2 (Slides). Diagnostic Tests.

6.1 Event-based Conditional Probability

Definition 6.3. Conditional Probability : The conditional prob-
ability P (A|B) of event A, given that event B 6= ∅ occurred, is
given by

P (A|B) =
P (A ∩B)

P (B)
. (6)

• Some ways to say23 or express the conditional probability,
P (A|B), are:

◦ the “probability of A, given B”

◦ the “probability of A, knowing B”

◦ the “probability of A happening, knowing B has already
occurred”

23Note also that although the symbol P (A|B) itself is practical, it phrasing in words can be
so unwieldy that in practice, less formal descriptions are used. For example, we refer to “the
probability that a tested-positive person has the disease” instead of saying “the conditional
probability that a randomly chosen person has the disease given that the test for this person
returns positive result.”
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• Defined only when P (B) > 0.

◦ If P (B) = 0, then it is illogical to speak of P (A|B); that
is P (A|B) is not defined.

6.4. Interpretation : Sometimes, we refer to P (A) as

• a priori probability , or

• the prior probability of A, or

• the unconditional probability of A.

It is sometimes useful to interpret P (A) as our knowledge of
the occurrence of event A before the experiment takes place. Con-
ditional probability P (A|B) is the updated probability of the
event A given that we now know that B occurred (but we still do
not know which particular outcome in the set B occurred).

Example 6.5. Back to Example 6.1

Example

3

 Roll a fair dice

 Sneak peek:
Figure 4: Sneak Peek: A Revisit
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Example 6.6. In diagnostic tests Example 6.2, we learn whether
we have the disease from test result. Originally, before taking the
test, the probability of having the disease is 0.01%. Being tested
positive from the 99%-accurate test updates the probability of
having the disease to about 1%.

More specifically, let D be the event that the testee has the
disease and TP be the event that the test returns positive result.

• Before taking the test, the probability of having the disease
is P (D) = 0.01%.

• Using 99%-accurate test means

P (TP |D) = 0.99 and P (T cP |Dc) = 0.99.

• Our calculation shows that P (D|TP ) ≈ 0.01.

6.7. “Prelude” to the concept of “independence”:
If the occurrence of B does not give you more information about
A, then

P (A|B) = P (A) (7)

and we say that A and B are independent .

• Meaning: “learning that eventB has occurred does not change
the probability that event A occurs.”

We will soon define “independence” in Section 6.2. Property
(7) can be regarded as a “practical” definition for independence.
However, there are some “technical” issues24 that we need to deal
with when we actually define independence.

24Here, the statement assume P (B) > 0 because it considers P (A|B). The concept of
independence to be defined in Section 6.2 will not rely directly on conditional probability and
therefore it will include the case where P (B) = 0.
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6.8. Similar properties to the three probability axioms:

(a) Nonnegativity: P (A|B) ≥ 0

(b) Unit normalization: P (Ω|B) = 1.

In fact, for any event A such that B ⊂ A, we have P (A|B) =
1.

This implies
P (Ω|B) = P (B|B) = 1.

(c) Countable additivity: For every countable sequence (An)
∞
n=1

of disjoint events,

P

( ∞⋃
n=1

An

∣∣∣∣∣B
)

=
∞∑
n=1

P (An|B).

• In particular, if A1 ⊥ A2,

P (A1 ∪ A2 |B ) = P (A1 |B ) + P (A2 |B )

6.9. More Properties:

• P (A|Ω) = P (A)

• P (Ac|B) = 1− P (A|B)

• P (A ∩B|B) = P (A|B)

• P (A1 ∪ A2|B) = P (A1|B) + P (A2|B)− P (A1 ∩ A2|B).

• P (A ∩B) ≤ P (A|B)
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6.10. When Ω is finite and all outcomes have equal probabilities,

P (A|B) =
P (A ∩B)

P (B)
=
|A ∩B| / |Ω|
|B| / |Ω|

=
|A ∩B|
|B|

.

This formula can be regarded as the classical version of conditional
probability.

Exercise 6.11. Someone has rolled a fair dice twice. You know
that one of the rolls turned up a face value of six. What is the
probability that the other roll turned up a six as well?
Ans: 1

11 (not 1
6). [17, Example 8.1, p. 244]

6.12. Probability of compound events

(a) P (A ∩B) = P (A)P (B|A)

(b) P (A ∩B ∩ C) = P (A ∩B)× P (C|A ∩B)

(c) P (A ∩B ∩ C) = P (A)× P (B|A)× P (C|A ∩B)

When we have many sets intersected in the conditioned part, we
often use “,” instead of “∩”.

Example 6.13. Most people reason as follows to find the proba-
bility of getting two aces when two cards are selected at random
from an ordinary deck of cards:

(a) The probability of getting an ace on the first card is 4/52.

(b) Given that one ace is gone from the deck, the probability of
getting an ace on the second card is 3/51.

(c) The desired probability is therefore

4

52
× 3

51
.

[17, p 243]

Question: What about the unconditional probability P (B)?
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Example 6.14. You know that roughly 5% of all used cars have
been flood-damaged and estimate that 80% of such cars will later
develop serious engine problems, whereas only 10% of used cars
that are not flood-damaged develop the same problems. Of course,
no used car dealer worth his salt would let you know whether your
car has been flood damaged, so you must resort to probability
calculations. What is the probability that your car will later run
into trouble?

You might think about this problem in terms of proportions.

If you solved the problem in this way, congratulations. You
have just used the law of total probability.

6.15. Total Probability Theorem : If a (finite or infinitely)
countable collection of events {B1, B2, . . .} is a partition of Ω, then

P (A) =
∑
i

P (A|Bi)P (Bi). (8)

This is a formula25 for computing the probability of an event
that can occur in different ways.

6.16. Special case:

P (A) = P (A|B)P (B) + P (A|Bc)P (Bc).

This gives exactly the same calculation as what we discussed in
Example 6.14.

25The tree diagram is useful for helping you understand the process. However, then the
number of possible cases is large (many Bi for the partition), drawing the tree diagram may
be too time-consuming and therefore you should also learn how to apply the total probability
theorem directly without the help of the tree diagram.
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Example 6.17. Continue from the “Diagnostic Tests” Example
6.2 and Example 6.6.

P (TP ) = P (TP ∩D) + P (TP ∩Dc)

= P (TP |D)P (D) + P (TP |Dc )P (Dc) .

For conciseness, we define

pd = P (D)

and
pTE = P (TP |Dc) = P (T cP |D).

Then,
P (TP ) = (1− pTE)pD + pTE(1− pD).

6.18. Bayes’ Theorem:

(a) Form 1:

P (B|A) = P (A|B)
P (B)

P (A)
.

(b) Form 2: If a (finite or infinitely) countable collection of events
{B1, B2, . . .} is a partition of Ω, then

P (Bk|A) = P (A|Bk)
P (Bk)

P (A)
=

P (A|Bk)P (Bk)∑
i P (A|Bi)P (Bi)

.

• Extremely useful for making inferences about phenomena that
cannot be observed directly.

• Sometimes, these inferences are described as “reasoning about
causes when we observe effects”.
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Example 6.19. Continue from the “Disease Testing” Examples
6.2, 6.6, and 6.17:

P (D |TP ) =
P (D ∩ TP )

P (TP )
=
P (TP |D )P (D)

P (TP )

=
(1− pTE)pD

(1− pTE)pD + pTE(1− pD)Effect of pTE

1

pTE = 1 – 0.99 = 0.01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pTE = 1 – 0.9 = 0.1

pTE = 1 – 0.5 = 0.5

pD

P(
D
|
T
P
)

Figure 5: Probability P (D |TP ) that a person will have the disease given that
the test result is positive. The conditional probability is evaluated as a func-
tion of PD which tells how common the disease is. Thee values of test error
probability pTE are shown.

Example 6.20. Medical Diagnostic: Because a new medical pro-
cedure has been shown to be effective in the early detection of an
illness, a medical screening of the population is proposed. The
probability that the test correctly identifies someone with the ill-
ness as positive is 0.99, and the probability that the test correctly
identifies someone without the illness as negative is 0.95. The in-
cidence of the illness in the general population is 0.0001. You take
the test, and the result is positive. What is the probability that
you have the illness? [14, Ex. 2-37]

59



Example 6.21. Bayesian networks are used on the Web sites of
high-technology manufacturers to allow customers to quickly di-
agnose problems with products. An oversimplified example is pre-
sented here.

A printer manufacturer obtained the following probabilities from
a database of test results. Printer failures are associated with three
types of problems: hardware, software, and other (such as connec-
tors), with probabilities 0.1, 0.6, and 0.3, respectively. The prob-
ability of a printer failure given a hardware problem is 0.9, given
a software problem is 0.2, and given any other type of problem is
0.5. If a customer enters the manufacturers Web site to diagnose
a printer failure, what is the most likely cause of the problem?

Let the events H, S, and O denote a hardware, software, or
other problem, respectively, and let F denote a printer failure.

Example 6.22 (Slides). The Murder of Nicole Brown

6.23. In practice, here is how we use the total probability theorem
and Bayes’ theorem:

Usually, we work with a system, which of course has input and
output. There can be many possibilities for inputs and there can be
many possibilities for output. Normally, for deterministic system,
we may have a specification that tells what would be the output
given that a specific input is used. Intuitively, we may think of this
as a table of mapping between input and output. For system with
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random component(s), when a specific input is used, the output is
not unique. This mean we needs conditional probability to describe
the output (given an input). Of course, this conditional probability
can be different for different inputs.

We will assume that there are many cases that the input can
happen. The event that the ith case happens is denoted by Bi. We
assume that we consider all possible cases. Therefore, the union
of these Bi will automatically be Ω. If we also define the cases so
that they do not overlap, then the Bi partitions Ω.

Similarly, there are many cases that the output can happen.
The event that the jth case happens is depenoted by Aj. We
assume that the Aj also partitions Ω.

In this way, the system itself can be described by the condi-
tional probabilities of the form P (Aj|Bi). This replace the table
mentioned above as the specification of the system. Note that
even when this information is not available, we can still obtain an
approximation of the conditional probability by repeating trials of
inputting Bi in to the system to find the relative frequency of the
output Aj.

Now, when the system is used in actual situation. Different
input cases can happen with different probabilities. These are
described by the prior probabilities P (Bi). Combining this with
the conditional probabilities P (Aj|Bi) above, we can use the total
probability theorem to find the probability of occurrence for out-
put and, even more importantly, for someone who cannot directly
observe the input, Bayes’ theorem can be used to infer the value
(or the probability) of the input from the observed output of the
system.

In particular, total probability theorem deals with the calcula-
tion of the output probabilities P (Aj):

P (Aj) =
∑
i

P (Aj ∩Bi) =
∑
i

P (Aj |Bi )P (Bi).

Bayes’ theorem calculates the probability that Bk was the input
event when the observer can only observe the output of the system
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and the observed value of the output is Aj:

P (Bk |Aj ) =
P (Aj ∩Bk)

P (Aj)
=

P (Aj |Bk )P (Bk)∑
i

P (Aj |Bi )P (Bi)
.

Example 6.24. In the early 1990s, a leading Swedish tabloid
tried to create an uproar with the headline “Your ticket is thrown
away!”. This was in reference to the popular Swedish TV show
“Bingolotto” where people bought lottery tickets and mailed them
to the show. The host then, in live broadcast, drew one ticket from
a large mailbag and announced a winner. Some observant reporter
noticed that the bag contained only a small fraction of the hun-
dreds of thousands tickets that were mailed. Thus the conclusion:
Your ticket has most likely been thrown away!

Let us solve this quickly. Just to have some numbers, let us
say that there are a total of N = 100, 000 tickets and that n =
1, 000 of them are chosen at random to be in the final drawing.
If the drawing was from all tickets, your chance to win would
be 1/N = 1/100, 000. The way it is actually done, you need to
both survive the first drawing to get your ticket into the bag and
then get your ticket drawn from the bag. The probability to get
your entry into the bag is n/N = 1, 000/100, 000. The conditional
probability to be drawn from the bag, given that your entry is in
it, is 1/n = 1/1, 000. Multiply to get 1/N = 1/100, 000 once more.
There were no riots in the streets. [15, p 22]

6.25. Chain rule of conditional probability [8, p 58]:

P (A ∩B|C) = P (B|C)P (A|B ∩ C).

Example 6.26. Your teacher tells the class there will be a surprise
exam next week. On one day, Monday-Friday, you will be told in
the morning that an exam is to be given on that day. You quickly
realize that the exam will not be given on Friday; if it was, it would
not be a surprise because it is the last possible day to get the
exam. Thus, Friday is ruled out, which leaves Monday-Thursday.
But then Thursday is impossible also, now having become the last
possible day to get the exam. Thursday is ruled out, but then
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Wednesday becomes impossible, then Tuesday, then Monday, and
you conclude: There is no such thing as a surprise exam! But the
teacher decides to give the exam on Tuesday, and come Tuesday
morning, you are surprised indeed.

This problem, which is often also formulated in terms of sur-
prise fire drills or surprise executions, is known by many names, for
example, the “hangman’s paradox” or by serious philosophers as
the “prediction paradox.” To resolve it, let’s treat it as a probabil-
ity problem. Suppose that the day of the exam is chosen randomly
among the five days of the week. Now start a new school week.
What is the probability that you get the test on Monday? Obvi-
ously 1/5 because this is the probability that Monday is chosen.
If the test was not given on Monday. what is the probability that
it is given on Tuesday? The probability that Tuesday is chosen
to start with is 1/5, but we are now asking for the conditional
probability that the test is given on Tuesday, given that it was not
given on Monday. As there are now four days left, this conditional
probability is 1/4. Similarly, the conditional probabilities that the
test is given on Wednesday, Thursday, and Friday conditioned on
that it has not been given thus far are 1/3, 1/2, and 1, respectively.

We could define the “surprise index” each day as the probability
that the test is not given. On Monday, the surprise index is there-
fore 0.8, on Tuesday it has gone down to 0.75, and it continues to
go down as the week proceeds with no test given. On Friday, the
surprise index is 0, indicating absolute certainty that the test will
be given that day. Thus, it is possible to give a surprise test but
not in a way so that you are equally surprised each day, and it is
never possible to give it so that you are surprised on Friday. [15,
p 23–24]

Example 6.27. Today Bayesian analysis is widely employed through-
out science and industry. For instance, models employed to deter-
mine car insurance rates include a mathematical function describ-
ing, per unit of driving time, your personal probability of having
zero, one, or more accidents. Consider, for our purposes, a sim-
plified model that places everyone in one of two categories: high
risk, which includes drivers who average at least one accident each
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year, and low risk, which includes drivers who average less than
one.

If, when you apply for insurance, you have a driving record
that stretches back twenty years without an accident or one that
goes back twenty years with thirty-seven accidents, the insurance
company can be pretty sure which category to place you in. But if
you are a new driver, should you be classified as low risk (a kid who
obeys the speed limit and volunteers to be the designated driver)
or high risk (a kid who races down Main Street swigging from a
half-empty $2 bottle of Boone’s Farm apple wine)?

Since the company has no data on you, it might assign you
an equal prior probability of being in either group, or it might
use what it knows about the general population of new drivers
and start you off by guessing that the chances you are a high risk
are, say, 1 in 3. In that case the company would model you as a
hybrid–one-third high risk and two-thirds low risk–and charge you
one-third the price it charges high-risk drivers plus two-thirds the
price it charges low-risk drivers.

Then, after a year of observation, the company can employ the
new datum to reevaluate its model, adjust the one-third and two-
third proportions it previously assigned, and recalculate what it
ought to charge. If you have had no accidents, the proportion of
low risk and low price it assigns you will increase; if you have had
two accidents, it will decrease. The precise size of the adjustment
is given by Bayes’s theory. In the same manner the insurance
company can periodically adjust its assessments in later years to
reflect the fact that you were accident-free or that you twice had
an accident while driving the wrong way down a one-way street,
holding a cell phone with your left hand and a doughnut with
your right. That is why insurance companies can give out “good
driver” discounts: the absence of accidents elevates the posterior
probability that a driver belongs in a low-risk group. [13, p 111-
112]
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6.2 Event-based Independence

Plenty of random things happen in the world all the time, most of
which have nothing to do with one another. If you toss a coin and
I roll a dice, the probability that you get heads is 1/2 regardless of
the outcome of my dice. Events that are unrelated to each other
in this way are called independent.

Definition 6.28. Two events A, B are called (statistically26)
independent if

P (A ∩B) = P (A)P (B) (9)

• Notation: A |= B

• Read “A and B are independent” or “A is independent of B”

• We call (9) the multiplication rule for probabilities.

• If two events are not independent, they are dependent. In-
tuitively, if two events are dependent, the probability of one
changes with the knowledge of whether the other has oc-
curred.

6.29. Intuition: Again, here is how you should think about inde-
pendent events: “If one event has occurred, the probability of the
other does not change.”

P (A|B) = P (A) and P (B|A) = P (B). (10)

In other words, “the unconditional and the conditional probabili-
ties are the same”. We can almost use (10) as the definitions for
independence. This is what we mentioned in 6.7. However, we use
(9) instead because it (1) also works with events whose probabili-
ties are zero and (2) also has clear symmetry in the expression (so
that A |= B and B |= A can clearly be seen as the same). In fact,
in 6.33, we show how (10) can be used to define independence with
extra condition that deals with the case when zero probability is
involved.

26Sometimes our definition for independence above does not agree with the everyday-
language use of the word “independence”. Hence, many authors use the term “statistically
independence” to distinguish it from other definitions.
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Example 6.30. [19, Ex. 5.4] Which of the following pairs of events
are independent?

(a) The card is a club, and the card is black.

Example: Club & Black

1

spades

clubs

hearts

diamonds

Figure 6: A Deck of Cards

(b) The card is a king, and the card is black.

6.31. An event with probability 0 or 1 is independent of any event
(including itself).

• In particular, ∅ and Ω are independent of any events.

6.32. An event A is independent of itself if and only if P (A) is 0
or 1.

6.33. Two events A, B with positive probabilities are independent
if and only if P (B |A) = P (B), which is equivalent to P (A |B ) =
P (A).

When A and/or B has zero probability, A and B are automat-
ically independent.

6.34. When A and B have nonzero probabilities, the following
statements are equivalent:
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6.35. The following four statements are equivalent:

A |= B, A |= Bc, Ac |= B, Ac |= Bc.

Example 6.36. If P (A|B) = 0.4, P (B) = 0.8, and P (A) = 0.5,
are the events A and B independent? [14]

6.37. Keep in mind that independent and disjoint are not
synonyms. In some contexts these words can have similar mean-
ings, but this is not the case in probability.

• If two events cannot occur at the same time (they are disjoint),
are they independent? At first you might think so. After all,
they have nothing to do with each other, right? Wrong! They
have a lot to do with each other. If one has occurred, we know
for certain that the other cannot occur. [15, p 12]

• To check whether A and B are disjoint, you only need to
look at the sets themselves and see whether they have shared
element(s). This can be answered without knowing probabil-
ities.

To check whether A and B are independent, you need to look
at the probabilities P (A), P (B), and P (A ∩B).

• Reminder: If events A and B are disjoint, you calculate the
probability of the union A ∪ B by adding the probabilities
of A and B. For independent events A and B you calculate
the probability of the intersection A ∩ B by multiplying the
probabilities of A and B.
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• The two statements A ⊥ B and A |= B can occur simultane-
ously only when P (A) = 0 and/or P (B) = 0.

◦ Reverse is not true in general.

Example 6.38. Experiment of flipping a fair coin twice. Ω =
{HH,HT, TH, TT}. Define event A to be the event that the first
flip gives a H; that is A = {HH,HT}. Event B is the event that
the second flip gives a H; that is B = {HH,TH}. Note that even
though the events A and B are not disjoint, they are independent.

Example 6.39 (Slides). Prosecutor’s fallacy : In 1999, a British
jury convicted Sally Clark of murdering two of her children who
had died suddenly at the ages of 11 and 8 weeks, respectively. A
pediatrician called in as an expert witness claimed that the chance
of having two cases of sudden infant death syndrome (SIDS), or
“cot deaths,” in the same family was 1 in 73 million. There was
no physical or other evidence of murder, nor was there a motive.
Most likely, the jury was so impressed with the seemingly astro-
nomical odds against the incidents that they convicted. But where
did the number come from? Data suggested that a baby born into
a family similar to the Clarks faced a 1 in 8,500 chance of dying
a cot death. Two cot deaths in the same family, it was argued,
therefore had a probability of (1/8, 500)2 which is roughly equal to
1/73,000.000.

Did you spot the error? The computation assumes that succes-
sive cot deaths in the same family are independent events. This
assumption is clearly questionable, and even a person without any
medical expertise might suspect that genetic factors play a role.
Indeed, it has been estimated that if there is one cot death, the
next child faces a much larger risk, perhaps around 1/100. To find
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the probability of having two cot deaths in the same family, we
should thus use conditional probabilities and arrive at the compu-
tation 1/8, 500×1/100, which equals l/850,000. Now, this is still a
small number and might not have made the jurors judge differently.
But what does the probability 1/850,000 have to do with Sallys
guilt? Nothing! When her first child died, it was certified to have
been from natural causes and there was no suspicion of foul play.
The probability that it would happen again without foul play was
1/100, and if that number had been presented to the jury, Sally
would not have had to spend three years in jail before the verdict
was finally overturned and the expert witness (certainly no expert
in probability) found guilty of “serious professional misconduct.”

You may still ask the question what the probability 1/100 has
to do with Sallys guilt. Is this the probability that she is inno-
cent? Not at all. That would mean that 99% of all mothers who
experience two cot deaths are murderers! The number 1/100 is
simply the probability of a second cot death, which only means
that among all families who experience one cot death, about 1%
will suffer through another. If probability arguments are used in
court cases, it is very important that all involved parties under-
stand some basic probability. In Sallys case, nobody did.

References: [13, 118–119] and [15, 22–23].

Definition 6.40. Three events A1, A2, A3 are independent if and
only if

P (A1 ∩ A2) = P (A1)P (A2)

P (A1 ∩ A3) = P (A1)P (A3)

P (A2 ∩ A3) = P (A2)P (A3)

P (A1 ∩ A2 ∩ A3) = P (A1)P (A2)P (A3)

Remarks :

(a) When the first three equations hold, we say that the three
events are pairwise independent.

(b) We may use the term “mutually independence” to further
emphasize that we have “independence” instead of “pairwise
independence”.
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Definition 6.41. The events A1, A2, . . . , An are independent if
and only if for any subcollection Ai1, Ai2, . . . , Aik,

P (Ai1 ∩ Ai2 ∩ · · · ∩ Aik) = P (Ai1)× P (Ai2)× · · · × P (Ain) .

• Note that part of the requirement is that

P (A1 ∩ A2 ∩ · · · ∩ An) = P (A1)× P (A2)× · · · × P (An) .

Therefore, if someone tells us that the events A1, A2, . . . , An

are independent, then one of the properties that we can con-
clude is that

P (A1 ∩ A2 ∩ · · · ∩ An) = P (A1)× P (A2)× · · · × P (An) .

• Equivalently, this is the same as the requirement that

P

⋂
j∈J

Aj

 =
∏
j∈J

P (Aj) ∀J ⊂ [n] and |J | ≥ 2

• Note that the case when j = 1 automatically holds. The case
when j = 0 can be regarded as the ∅ event case, which is also
trivially true.

6.42. Four events A,B,C,D are pairwise independent if and
only if they satisfy the following six conditions:

P (A ∩B) = P (A)P (B),

P (A ∩ C) = P (A)P (C),

P (A ∩D) = P (A)P (D),

P (B ∩ C) = P (B)P (C),

P (B ∩D) = P (B)P (D), and

P (C ∩D) = P (C)P (D).

They are independent if and only if they are pairwise independent
(satisfy the six conditions above) and also satisfy the following five
more conditions:

P (B ∩ C ∩D) = P (B)P (C)P (D),

P (A ∩ C ∩D) = P (A)P (C)P (D),

P (A ∩B ∩D) = P (A)P (B)P (D),

P (A ∩B ∩ C) = P (A)P (B)P (C), and

P (A ∩B ∩ C ∩D) = P (A)P (B)P (C)P (D).
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6.3 Bernoulli Trials

Example 6.43. Consider the following random experiments

(a) Flip a coin 10 times. We are interested in the number of heads
obtained.

(b) Of all bits transmitted through a digital transmission channel,
10% are received in error. We are interested in the number of
bits in error in the next five bits transmitted.

(c) A multiple-choice test contains 10 questions, each with four
choices, and you guess at each question. We are interested in
the number of questions answered correctly.

These examples illustrate that a general probability model that
includes these experiments as particular cases would be very useful.

Example 6.44. Each of the random experiments in Example 6.43
can be thought of as consisting of a series of repeated, random
trials. In all cases, we are interested in the number of trials that
meet a specified criterion. The outcome from each trial either
meets the criterion or it does not; consequently, each trial can be
summarized as resulting in either a success or a failure.

Definition 6.45. A Bernoulli trial involves performing an ex-
periment once and noting whether a particular event A occurs.

The outcome of the Bernoulli trial is said to be

(a) a “success” if A occurs and

(b) a “failure” otherwise.

We may view the outcome of a single Bernoulli trial as the out-
come of a toss of an unfair coin for which the probability of heads
(success) is p = P (A) and the probability of tails (failure) is 1− p.

• The labeling (“success” and “failure”) is not meant to be lit-
eral and sometimes has nothing to do with the everyday mean-
ing of the words. We can just as well use “H and T”, “A and
B”, or “1 and 0”.
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Example 6.46. Examples of Bernoulli trials: Flipping a coin,
deciding to vote for candidate A or candidate B, giving birth to
a boy or girl, buying or not buying a product, being cured or not
being cured, even dying or living are examples of Bernoulli trials.

• Actions that have multiple outcomes can also be modeled as
Bernoulli trials if the question you are asking can be phrased
in a way that has a yes or no answer, such as “Did the dice
land on the number 4?” or “Is there any ice left on the North
Pole?”

Definition 6.47. (Independent) Bernoulli Trials = a Bernoulli
trial is repeated many times.

(a) It is usually assumed that the trials are independent. This
implies that the outcome from one trial has no effect on the
outcome to be obtained from any other trial.

(b) Furthermore, it is often reasonable to assume that the prob-
ability of a success in each trial is constant.

An outcome of the complete experiment is a sequence of suc-
cesses and failures which can be denoted by a sequence of ones
and zeroes.

Example 6.48. If we toss unfair coin n times, we obtain the
space Ω = {H,T}n consisting of 2n elements of the form (ω1, ω2, . . . , ωn)
where ωi = H or T.

Example 6.49. What is the probability of two failures and three
successes in five Bernoulli trials with success probability p.

We observe that the outcomes with three successes in five trials
are 11100, 11010, 11001, 10110, 10101, 10011, 01110, 01101, 01011,
and 00111. We note that the probability of each outcome is a
product of five probabilities, each related to one Bernoulli trial.
In outcomes with three successes, three of the probabilities are p
and the other two are 1 − p. Therefore, each outcome with three
successes has probability (1− p)2p3. There are 10 of them. Hence,
the total probability is 10(1− p)2p3
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6.50. The probability of exactly n1 success in n = n0+n1 bernoulli
trials is (

n

n1

)
(1− p)n−n1pn1 =

(
n

n0

)
(1− p)n0pn−n0.

Example 6.51. At least one occurrence of a 1-in-n-chance event
in n repeated trials:

0 5 10 15 20 25 30 35 40 45 50
0
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n Bernoulli trials

1

 Assume success probability = 1/n

 #successes 1P 

 #successes 1P 
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Figure 7: Number of occurrences of 1-in-n-chance event in n repeated Bernoulli
trials
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Example 6.52. Digital communication over unreliable chan-
nels : Consider a communication system below

Here, we consider a simple channel called binary symmetric
channel:

This channel can be described as a channel that introduces ran-
dom bit errors with probability p.

A crude digital communication system would put binary infor-
mation into the channel directly; the receiver then takes whatever
value that shows up at the channel output as what the sender
transmitted. Such communication system would directly suffer bit
error probability of p.

In situation where this error rate is not acceptable, error control
techniques are introduced to reduce the error rate in the delivered
information.

One method of reducing the error rate is to use error-correcting
codes:

A simple error-correcting code is the repetition code. Exam-
ple of such code is described below:

(a) At the transmitter, the “encoder” box performs the following
task:
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(i) To send a 1, it will send 11111 through the channel.

(ii) To send a 0, it will send 00000 through the channel.

(b) When the five bits pass through the channel, it may be cor-
rupted. Assume that the channel is binary symmetric and
that it acts on each of the bit independently.

(c) At the receiver, we (or more specifically, the decoder box) get
5 bits, but some of the bits may be changed by the channel.

To determine what was sent from the transmitter, the receiver
apply the majority rule : Among the 5 received bits,

(i) if #1 > #0, then it claims that “1” was transmitted,

(ii) if #0 > #1, then it claims that “0” was transmitted.

Error Control Coding

1

 Repetition Code at Tx: Repeat the bit n times.

 Channel: Binary Symmetric Channel (BSC) with bit error 
probability p.

 Majority Vote at Rx

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
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n = 15

n = 5

n = 1

n = 25

p

 P

Figure 8: Bit error probability for a simple system that uses repetition code
at the transmitter (repeat each bit n times) and majority vote at the receiver.
The channel is assumed to be binary symmetric with bit error probability p.
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Exercise 6.53 (F2011). Kakashi and Gai are eternal rivals. Kakashi
is a little stronger than Gai and hence for each time that they fight,
the probability that Kakashi wins is 0.55. In a competition, they
fight n times (where n is odd). Assume that the results of the fights
are independent. The one who wins more will win the competition.

Suppose n = 3, what is the probability that Kakashi wins the
competition.

76



 Sirindhorn International Institute of Technology 

Thammasat University 

School of Information, Computer and Communication Technology 

 

 

ECS315 2014/1 Part III.1 Dr.Prapun

7 Random variables

In performing a chance experiment, one is often not interested
in the particular outcome that occurs but in a specific numerical
value associated with that outcome. In fact, for most applica-
tions, measurements and observations are expressed as numerical
quantities.

Example 7.1. Take this course and observe your grades.

7.2. The advantage of working with numerical quantities is that
we can perform mathematical operations on them.

In the mathematics of probability, averages are called expecta-
tions or expected values.
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Definition 7.3. A real-valued function X(ω) defined for all points
ω in a sample space Ω is called a random variable (r.v. or RV)
27.

• So, a random variable is a rule that assigns a numerical value
to each possible outcome of a chance experiment.

• Intuitively, a random variable is a variable that takes on its
values by chance.

• The convention is to use capital letters such as X, Y, Z to
denote random variables.

Example 7.4. Roll a fair dice: Ω = {1, 2, 3, 4, 5, 6}.

27The term “random variable” is a misnomer. Technically, if you look at the definition
carefully, a random variable is a deterministic function; that is, it is not random and it is not
a variable. [Toby Berger][19, p 254]

• As a function, it is simply a rule that maps points/outcomes ω in Ω to real numbers.

• It is also a deterministic function; nothing is random about the mapping/assignment.
The randomness in the observed values is due to the underlying randomness of the
argument of the function X, namely the experiment outcomes ω.

• In other words, the randomness in the observed value of X is induced by the underlying
random experiment, and hence we should be able to compute the probabilities of the
observed values in terms of the probabilities of the underlying outcomes.
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Example 7.5 (Three Coin Tosses). Counting the number of heads
in a sequence of three coin tosses.

Ω = {TTT,TTH,THT,THH,HTT,HTH,HHT,HHH}
Three Coin Tosses

1

 TTT,TTH,THT,THH,HTT,HTH,HHT,HHH 

 
 

 

0, TTT

1, TTH,THT,HTT

2, THH,HTH,HHT

3, HHH

N











 

 


 

TTT

HHH

HTT

THT

TTH

HHT

HTH

THH


Real number line0 1 2 3 4

Example 7.6 (Sum of Two Dice). If S is the sum of the dots
when rolling one fair dice twice, the random variable S assigns the
numerical value i+j to the outcome (i, j) of the chance experiment.

Example 7.7. Continue from Example 7.4,

(a) What is the probability that X = 4?

(b) What is the probability that Y = 4?
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Definition 7.8. Events involving random variables:

• [some condition(s) on X] = the set of outcomes in Ω such that
X(ω) satisfies the conditions.

• [X ∈ B] = {ω ∈ Ω : X(ω) ∈ B}

• [a ≤ X < b] = [X ∈ [a, b)] = {ω ∈ Ω : a ≤ X(ω) < b}

• [X > a] = {ω ∈ Ω : X(ω) > a}

• [X = x] = {ω ∈ Ω : X(ω) = x}

◦ We usually use the corresponding lowercase letter28 to
denote

(a) a possible value (realization) of the random variable

(b) the value that the random variable takes on

(c) the running values for the random variable

All of the above items are sets of outcomes. They are all events!

Example 7.9. Continue from Examples 7.4 and 7.7,

(a) [X = 4] = {ω : X(ω) = 4}

(b) [Y = 4] = {ω : Y (ω) = 4} =
{
ω : (ω − 3)2 = 4

}
7.10. Event of the form “[some condition(s) on X]” or “[some

statement(s) about X]” can be written in the from [X ∈ B] for
some appropriate B.

28This is the same as writing [X = c] where c is a constant. Basically, it is a generic
notation for [X = 5], [X = 1.6], [X = π], etc. We use this when

(a) we don’t want to specify the constant in the expression yet or

(b) we want to say that the statement/equation/property containing it is valid for any value
of c.

It turns out that, later on, we will have to deal with many random variables and hence it is
convenient to have the name of the constant c match the name of the corresponding random
variable. So, we talk about the events [X = x], [Y = y], and [Z = z] instead of having to
find new name for the constant corresponding to each one of them, say, [X = c], [Y = d], and
[Z = h].

You may think we can use constants c1, c2, . . .. However, we also will have to deal with
ransom variables X1, X2, . . ., Y1, Y2, . . ., Z1, Z2, . . .. So, again, will have to come up with new
names for a lot of constants.
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Example 7.11. Express each event below in the form [X ∈ B].

(a) [5 ≤ X < 8]

(b) [|X| < 3]

(c) [X > 2]

(d) [X = 1]

Definition 7.12. We also have another notation for P [X ∈ B]:

PX(B) ≡ P [X ∈ B] .

Observe that this function PX is a set function. It maps subsets
of real numbers into their probability values. Technically, we call
this function the law or distribution of the random variable X.
However, later on, we shall see that there are many functions that
are also referred to as the “distribution” of X as well. They are
all equivalent in the sense that they (almost surely) give the same
information about probability concerning X.

Definition 7.13. To avoid double use of brackets (round brack-
ets over square brackets), we write P [X ∈ B] when we means
P ([X ∈ B]). Hence,

P [X ∈ B] = P ([X ∈ B]) = P ({ω ∈ Ω : X(ω) ∈ B}) .

Similarly,

P [X < x] = P ([X < x]) = P ({ω ∈ Ω : X(ω) < x}) .

Example 7.14. In Example 7.5 (Three Coin Tosses), if the coin
is fair, then
P [N < 2] =
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7.15. At a certain point in most probability courses, the sample
space is rarely mentioned anymore and we work directly with ran-
dom variables. The sample space often “disappears” along with
the “(ω)” of X(ω) but they are really there in the background.

Definition 7.16. A set S is called a support of a random variable
X if P [X ∈ S] = 1.

• To emphasize that S is a support of a particular variable X,
we denote a support of X by SX .

• Practically, we define a support of a random variable X to be
the set of all the “possible” values of X.29

• For any random variable, the set R of all real numbers is
always a support; however, it is not that useful because it does
not further limit the possible values of the random variable.

• Recall that a support of a probability measure P is any set
A ⊂ Ω such that P (A) = 1.

Definition 7.17. The probability distribution is a description
of the probabilities associated with the random variable.

7.18. There are three types of of random variables. The first type,
which will be discussed in Section 8, is called discrete random
variable . To tell whether a random variable is discrete, one simple
way is to consider the “possible” values of the random variable.
If it is limited to only a finite or countably infinite number of
possibilities, then it is discrete. We will later discuss continuous
random variables whose possible values can be anywhere in
some intervals of real numbers.

29Later on, you will see that 1) a default support of a discrete random variable is the set
of values where the pmf is strictly positive and 2) a default support of a continuous random
variable is the set of values where the pdf is strictly positive.
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8 Discrete Random Variables

Intuitively, to tell whether a random variable is discrete, we simply
consider the possible values of the random variable. If the random
variable is limited to only a finite or countably infinite number of
possibilities, then it is discrete.

Example 8.1. Voice Lines: A voice communication system for
a business contains 48 external lines. At a particular time, the
system is observed, and some of the lines are being used. Let the
random variable X denote the number of lines in use. Then, X
can assume any of the integer values 0 through 48. [14, Ex 3-1]

Definition 8.2. A random variable X is said to be a discrete
random variable if there exists a countable number of distinct
real numbers xk such that∑

k

P [X = xk] = 1. (11)

In other words, X is a discrete random variable if and only if X
has a countable support.

Example 8.3. For the random variable N in Example 7.5 (Three
Coin Tosses),

For the random variable S in Example 7.6 (Sum of Two Dice),

8.4. Although the support SX of a random variable X is defined as
any set S such that P [X ∈ S] = 1. For discrete random variable,
SX is usually set to be {x : pX(x) > 0}, the set of all “possible
values” of X.

Definition 8.5. Important Special Case: An integer-valued ran-
dom variable is a discrete random variable whose xk in (11)
above are all integers.
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8.6. Recall, from 7.17, that the probability distribution of a
random variable X is a description of the probabilities associated
with X.

For a discrete random variable, the distribution is often char-
acterized by just a list of the possible values (x1, x2, x3, . . .) along
with the probability of each:

(P [X = x1] , P [X = x2] , P [X = x3] , . . . , respectively) .

In some cases, it is convenient to express the probability in
terms of a formula. This is especially useful when dealing with a
random variable that has an unbounded number of outcomes. It
would be tedious to list all the possible values and the correspond-
ing probabilities.

8.1 PMF: Probability Mass Function

Definition 8.7. When X is a discrete random variable satisfying
(11), we define its probability mass function (pmf) by30

pX(x) = P [X = x].

• Sometimes, when we only deal with one random variable or
when it is clear which random variable the pmf is associated
with, we write p(x) or px instead of pX(x).

• The argument (x) of a pmf ranges over all real numbers.
Hence, the pmf is defined for x that is not among the xk
in (11). In such case, the pmf is simply 0. This is usually
expressed as “pX(x) = 0, otherwise” when we specify a pmf
for a particular random variable.

30Many references (including [14] and MATLAB) does not distinguish the pmf from another
function called probability density function (pdf). These references use the function fX(x)
to represent both pmf and pdf. We will NOT use fX(x) for pmf. Later, we will define fX(x)
as a probability density function which will be used primarily for another type of random
variable (continuous RV).
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Example 8.8. Continue from Example 7.5. N is the number of
heads in a sequence of three coin tosses.

8.9. Graphical Description of the Probability Distribution: Tra-
ditionally, we use stem plot to visualize pX . To do this, we graph
a pmf by marking on the horizontal axis each value with nonzero
probability and drawing a vertical bar with length proportional to
the probability.

8.10. Any pmf p(·) satisfies two properties:

(a) p(·) ≥ 0

(b) there exists numbers x1, x2, x3, . . . such that
∑

k p(xk) = 1 and
p(x) = 0 for other x.

When you are asked to verify that a function is a pmf, check these
two properties.

8.11. Finding probability from pmf: for any subset B of R, we
can find

P [X ∈ B] =
∑
xk∈B

P [X = xk] =
∑
xk∈B

pX(xk).

In particular, for integer-valued random variables,

P [X ∈ B] =
∑
k∈B

P [X = k] =
∑
k∈B

pX(k).
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8.12. Steps to find probability of the form P [some condition(s) on X]
when the pmf pX(x) is known.

(a) Find the support of X.

(b) Consider only the x inside the support. Find all values of x
that satisfies the condition(s).

(c) Evaluate the pmf at x found in the previous step.

(d) Add the pmf values from the previous step.

Example 8.13. Suppose a random variable X has pmf

pX (x) =

{ c/x, x = 1, 2, 3,
0, otherwise.

(a) The value of the constant c is

(b) Sketch of pmf

(c) P [X = 1]

(d) P [X ≥ 2]

(e) P [X > 3]
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8.14. Any function p(·) on R which satisfies

(a) p(·) ≥ 0, and

(b) there exists numbers x1, x2, x3, . . . such that
∑

k p(xk) = 1 and
p(x) = 0 for other x

is a pmf of some discrete random variable.

8.2 CDF: Cumulative Distribution Function

Definition 8.15. The (cumulative) distribution function (cdf )
of a random variable X is the function FX(x) defined by

FX (x) = P [X ≤ x] .

• The argument (x) of a cdf ranges over all real numbers.

• From its definition, we know that 0 ≤ FX ≤ 1.

• Think of it as a function that collects the “probability mass”
from −∞ up to the point x.

8.16. From pmf to cdf: In general, for any discrete random vari-
able with possible values x1, x2, . . ., the cdf of X is given by

FX(x) = P [X ≤ x] =
∑
xk≤x

pX(xk).

Example 8.17. Continue from Examples 7.5, 7.14, and 8.8 where
N is defined as the number of heads in a sequence of three coin
tosses. We have

pN(0) = pN(3) =
1

8
and pN(1) = pN(2) =

3

8
.

(a) FN(0)

(b) FN(1.5)
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(c) Sketch of cdf

8.18. Facts:

• For any discrete r.v. X, FX is a right-continuous, staircase
function of x with jumps at a countable set of points xk.

• When you are given the cdf of a discrete random variable, you
can derive its pmf from the locations and sizes of the jumps.
If a jump happens at x = c, then pX(c) is the same as the
amount of jump at c. At the location x where there is no
jump, pX(x) = 0.

Example 8.19. Consider a discrete random variable X whose cdf
FX(x) is shown in Figure 9. 3-3 CUMULATIVE DISTRIBUTION FUNCTIONS 73
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Figure 3-3 Cumulative distribution function for
Example 3-7.

Figure 3-4 Cumulative distribution
function for Example 3-8.
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3-32. Determine the cumulative distribution function of the
random variable in Exercise 3-14.

3-33. Determine the cumulative distribution function for
the random variable in Exercise 3-15; also determine the fol-
lowing probabilities:
(a) (b)
(c) (d)

3-34. Determine the cumulative distribution function for the
random variable in Exercise 3-16; also determine the following
probabilities:
(a) (b)
(c) (d)

3-35. Determine the cumulative distribution function for
the random variable in Exercise 3-21.

3-36. Determine the cumulative distribution function for
the random variable in Exercise 3-22.

3-37. Determine the cumulative distribution function for
the random variable in Exercise 3-23.

3-38. Determine the cumulative distribution function for
the variable in Exercise 3-24.

Verify that the following functions are cumulative distribution
functions, and determine the probability mass function and the
requested probabilities.

3-39.

(a) (b)
(c) (d)

3-40. Errors in an experimental transmission channel are
found when the transmission is checked by a certifier that de-
tects missing pulses. The number of errors found in an eight-
bit byte is a random variable with the following distribution:

F1x2 � μ

0 x � 1
0.7 1 � x � 4
0.9 4 � x � 7
1 7 � x

P1X � 22P11 � X � 22
P1X � 22P1X � 32

F1x2 � •
0 x � 1
0.5 1 � x � 3
1 3 � x

P11 � X � 22P1X � 22
P1X � 32P1X � 1.52

P1X � 02P1�1.1 � X � 12
P1X � 2.22P1X � 1.252

Determine each of the following probabilities:
(a) (b)
(c) (d)
(e)

3-41.

(a) (b)
(c) (d)
(e) (f)

3-42. The thickness of wood paneling (in inches) that a cus-
tomer orders is a random variable with the following cumula-
tive distribution function:

Determine the following probabilities:
(a) (b)
(c) (d)
(e)

3-43. Determine the cumulative distribution function for
the random variable in Exercise 3-28.

3-44. Determine the cumulative distribution function for
the random variable in Exercise 3-29.

3-45. Determine the cumulative distribution function for
the random variable in Exercise 3-30.

3-46. Determine the cumulative distribution function for
the random variable in Exercise 3-31.

P1X � 1�22
P1X � 1�42P1X � 5�162
P1X � 1�42P1X � 1�182

F1x2 � μ

0 x � 1�8
0.2 1�8 � x � 1�4
0.9 1�4 � x � 3�8
1 3�8 � x

P1�10 � X � 102P10 � X � 102
P1X � 02P140 � X � 602
P1X � 402P1X � 502

F1x2 � μ

0 x � �10
0.25 �10 � x � 30
0.75 30 � x � 50
1 50 � x

P1X � 22
P1X � 42P1X � 52
P1X � 72P1X � 42

EXERCISES FOR SECTION 3-3

JWCL232_c03_066-106.qxd  1/7/10  10:58 AM  Page 73

Figure 9: CDF for Example 8.19

Determine the pmf pX(x).
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8.20. Characterizing31 properties of cdf:

CDF1 FX is non-decreasing (monotone increasing)

CDF2 FX is right continuous (continuous from the right)

  x    0P X x   

   countable set C,   0XP C   

 
XF  is continuous 

25) Every random variable can be written as a sum of a discrete random variable and a 

continuous random variable. 

26) A random variable can have at most countably many point x such that

  0P X x  . 

27) The (cumulative) distribution function (cdf)  induced by a probability P on 

 ,

  is the function    ,F x P x  . 

The (cumulative) distribution function (cdf) of the random variable X is the 

function      ,X

XF x P x P X x    . 

 The distribution 
XP  can be obtained from the distribution function by setting 

   ,X

XP x F x  ; that is
XF  uniquely determines 

XP . 

 0 1XF   

 
XF  is non-decreasing 

 
XF  is right continuous:  

x           lim limX X X X
y x y x
y x

F x F y F y F x P X x




    


. 

 

  lim 0X
x

F x


  and  lim 1X
x

F x


 . 

 x          lim lim ,X

X X X
y x y x
y x

F x F y F y P x P X x




     


. 

        XP X x P x F x F x     = the jump or saltus in F at x. 

   x y  

      ,P x y F y F x   

      ,P x y F y F x   

 

Figure 10: Right-continuous function at jump point

CDF3 lim
x→−∞

FX (x) = 0 and lim
x→∞

FX (x) = 1.

8.21. For discrete random variable, the cdf FX can be written as

FX(x) =
∑
xk

pX(xk)u(x− xk),

where u(x) = 1[0,∞)(x) is the unit step function.

31These properties hold for any type of random variables. Moreover, for any function F
that satisfies these three properties, there exists a random variable X whose CDF is F .
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8.3 Families of Discrete Random Variables

Many physical systems can be modeled by the same or similar
random experiments and random variables. In this subsection,
we present the analysis of several discrete random variables that
frequently arise in applications.32

Definition 8.22. X is uniformly distributed on a finite set S
if

pX(x) = P [X = x] =

{ 1
|S| , x ∈ S,
0, otherwise,

• We write X ∼ U(S) or X ∼ Uniform(S).

• Read “X is uniform on S” or “X is a uniform random variable
on set S”.

• The pmf is usually referred to as the uniform discrete distri-
bution.

• Simulation: When the support S contains only consecutive in-
tegers33, it can be generated by the command randi in MATLAB

(R2008b).

32As mention in 7.15, we often omit a discussion of the underlying sample space of the
random experiment and directly describe the distribution of a particular random variable.

33or, with minor manipulation, only uniformly spaced numbers
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Example 8.23. X is uniformly distributed on 1, 2, . . . , n if

In MATLAB, X can be generated by randi(n).

Example 8.24. Uniform pmf is used when the random variable
can take finite number of “equally likely” or “totally random” val-
ues.

• Classical game of chance / classical probability

• Fair gaming devices (well-balanced coins and dice, well-shuffled
decks of cards)

Example 8.25. Roll a fair dice. Let X be the outcome.

Definition 8.26. X is a Bernoulli random variable if

pX (x) =


1− p, x = 0,
p, x = 1,
0, otherwise,

p ∈ (0, 1)

• Write X ∼ B(1, p) or X ∼ Bernoulli(p)

• X takes only two values: 0 or 1

Definition 8.27. X is a binary random variable if

pX (x) =


1− p, x = a,
p, x = b,
0, otherwise,

p ∈ (0, 1), b > a.

• X takes only two values: a or b
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Definition 8.28. X is a binomial random variable with size
n ∈ N and parameter p ∈ (0, 1) if

pX (x) =

{ (
n
x

)
px(1− p)n−x, x ∈ {0, 1, 2, . . . , n},

0, otherwise
(12)

• Write X ∼ B(n, p) or X ∼ binomial(n, p).

◦ Observe that B(1, p) is Bernoulli with parameter p.

• To calculate pX(x), can use binopdf(x,n,p) in MATLAB.

• Interpretation: X is the number of successes in n independent
Bernoulli trials.

Example 8.29. An optical inspection system is to distinguish
among different part types. The probability of a correct classi-
fication of any part is 0.98. Suppose that three parts are inspected
and that the classifications are independent.

(a) Let the random variable X denote the number of parts that
are correctly classified. Determine the probability mass func-
tion of X. [14, Q3-20]

(b) Let the random variable Y denote the number of parts that
are incorrectly classified. Determine the probability mass
function of Y .

Solution :

(a) X is a binomial random variable with n = 3 and p = 0.98.
Hence,

pX (x) =

{ (
3
x

)
0.98x(0.02)3−x, x ∈ {0, 1, 2, 3},

0, otherwise
(13)

In particular, pX(0) = 8 × 10−6, pX(1) = 0.001176, pX(2) =
0.057624, and pX(3) = 0.941192. Note that in MATLAB, these
probabilities can be calculated by evaluating
binopdf(0:3,3,0.98).
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(b) Y is a binomial random variable with n = 3 and p = 0.02.
Hence,

pY (y) =

{ (3
y

)
0.02y(0.98)3−y, y ∈ {0, 1, 2, 3},

0, otherwise
(14)

In particular, pY (0) = 0.941192, pY (1) = 0.057624, pY (2) =
0.001176, and pY (3) = 8 × 10−6. Note that in MATLAB, these
probabilities can be calculated by evaluating
binopdf(0:3,3,0.02).

Alternatively, note that there are three parts. IfX of them are
classified correctly, then the number of incorrectly classified
parts is n − X, which is what we defined as Y . Therefore,
Y = 3 − X. Hence, pY (y) = P [Y = y] = P [3−X = y] =
P [X = 3− y] = pX(3− y).

Example 8.30. Daily Airlines flies from Amsterdam to London
every day. The price of a ticket for this extremely popular flight
route is $75. The aircraft has a passenger capacity of 150. The
airline management has made it a policy to sell 160 tickets for this
flight in order to protect themselves against no-show passengers.
Experience has shown that the probability of a passenger being
a no-show is equal to 0.1. The booked passengers act indepen-
dently of each other. Given this overbooking strategy, what is the
probability that some passengers will have to be bumped from the
flight?

Solution : This problem can be treated as 160 independent
trials of a Bernoulli experiment with a success rate of p = 9/10,
where a passenger who shows up for the flight is counted as a suc-
cess. Use the random variable X to denote number of passengers
that show up for a given flight. The random variable X is bino-
mial distributed with the parameters n = 160 and p = 9/10. The
probability in question is given by

P [X > 150] = 1− P [X ≤ 150] = 1− FX(150).

In MATLAB, we can enter 1-binocdf(150,160,9/10) to get 0.0359.
Thus, the probability that some passengers will be bumped from
any given flight is roughly 3.6%. [17, Ex 4.1]
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Definition 8.31. A geometric random variable X is defined by
the fact that for some constant β ∈ (0, 1),

pX(k + 1) = β × pX(k)

for all k ∈ S where S can be either N or N ∪ {0}.

(a) When its support is N = {1, 2, . . .},

pX(x) =

{
(1− β) βx−1, x = 1, 2, . . .
0, otherwise.

• In MATLAB, to evaluate pX(x), use geopdf(x-1,1-β).

• Interpretation: X is the number of trials required in
Bernoulli trials to achieve the first success.

In particular, in a series of Bernoulli trials (independent
trials with constant probability p of a success), let the
random variable X denote the number of trials until the
first success. Then X is a geometric random variable with
parameter β = 1− p and

pX(x) =

{
(1− β) βx−1, x = 1, 2, . . .
0, otherwise

=

{
p(1− p)x−1, x = 1, 2, . . .
0, otherwise.

• Write X ∼ G1(p) or geometric1(p).

(b) When its support is N ∪ {0},

pX(x) =

{
(1− β) βx, x = 0, 1, 2, . . .
0, otherwise

=

{
p(1− p)x, x = 0, 1, 2, . . .
0, otherwise.

• Write X ∼ G0 (p) or geometric0 (p).

• In MATLAB, to evaluate pX(x), use geopdf(x,1-β).

• Interpretation: X is the number of failures in Bernoulli
trials before the first success occurs.
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8.32. In 1837, the famous French mathematician Poisson intro-
duced a probability distribution that would later come to be known
as the Poisson distribution, and this would develop into one of the
most important distributions in probability theory. As is often re-
marked, Poisson did not recognize the huge practical importance of
the distribution that would later be named after him. In his book,
he dedicates just one page to this distribution. It was Bortkiewicz
in 1898, who first discerned and explained the importance of the
Poisson distribution in his book Das Gesetz der Kleinen Zahlen
(The Law of Small Numbers). [17]

Definition 8.33. X is a Poisson random variable with param-
eter α > 0 if

pX (x) =

{
e−αα

x

x! , x = 0, 1, 2, . . .
0, otherwise

• In MATLAB, use poisspdf(x,alpha).

• Write X ∼ P (α) or Poisson(α).

• We will see later in Example ?? that α is the “average” or
expected value of X.

• Instead of X, Poisson random variable is usually denoted by
Λ. The parameter α is often replaced by λτ where λ is referred
to as the intensity/rate parameter of the distribution

Example 8.34. The first use of the Poisson model is said to have
been by a Prussian (German) physician, Bortkiewicz, who found
that the annual number of late-19th-century Prussian (German)
soldiers kicked to death by horses fitted a Poisson distribution [6,
p 150],[3, Ex 2.23]34.

34I. J. Good and others have argued that the Poisson distribution should be called the
Bortkiewicz distribution, but then it would be very difficult to say or write.
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Example 8.35. The number of hits to a popular website during
a 1-minute interval is given by N ∼ P(α) where α = 2.

(a) Find the probability that there is at least one hit between
3:00AM and 3:01AM.

(b) Find the probability that there are at least 2 hits during the
time interval above.

8.36. One of the reasons why Poisson distribution is important is
because many natural phenomenons can be modeled by Poisson
processes .

Definition 8.37. A Poisson process (PP) is a random arrange-
ment of “marks” (denoted by “×” below) on the time line.

The “marks” may indicate the arrival times or occurrences of
event/phenomenon of interest.

Example 8.38. Examples of processes that can be modeled by
Poisson process include

(a) the sequence of times at which lightning strikes occur or mail
carriers get bitten within some region

(b) the emission of particles from a radioactive source
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(c) the arrival of

• telephone calls at a switchboard or at an automatic phone-
switching system

• urgent calls to an emergency center

• (filed) claims at an insurance company

• incoming spikes (action potential) to a neuron in human
brain

(d) the occurrence of

• serious earthquakes

• traffic accidents

• power outages

in a certain area.

(e) page view requests to a website

8.39. It is convenient to consider the Poisson process in terms of
customers arriving at a facility.

We focus on a type of Poisson process that is called homogeneous
Poisson process.

Definition 8.40. For homogeneous Poisson process, there is
only one parameter that describes the whole process. This number
is call the rate and usually denoted by λ.

Example 8.41. If you think about modeling customer arrival as
a Poisson process with rate λ = 5 customers/hour, then it means
that during any fixed time interval of duration 1 hour (say, from
noon to 1PM), you expect to have about 5 customers arriving in
that interval. If you consider a time interval of duration two hours
(say, from 1PM to 3PM), you expect to have about 2 × 5 = 10
customers arriving in that time interval.

8.42. One important fact which we will revisit later is that, for a
homogeneous Poisson process, the number of arrivals during a time
interval of duration T is a Poisson random variable with parameter
α = λT .
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Example 8.43. Examples of Poisson random variables :

• #photons emitted by a light source of intensity λ [photon-
s/second] in time τ

• #atoms of radioactive material undergoing decay in time τ

• #clicks in a Geiger counter in τ seconds when the average
number of click in 1 second is λ.

• #dopant atoms deposited to make a small device such as an
FET

• #customers arriving in a queue or workstations requesting
service from a file server in time τ

• Counts of demands for telephone connections in time τ

• Counts of defects in a semiconductor chip.

Example 8.44. Thongchai produces a new hit song every 7 months
on average. Assume that songs are produced according to a Pois-
son process. Find the probability that Thongchai produces more
than two hit songs in 1 year.

8.45. Poisson approximation of Binomial distribution: When
p is small and n is large, B(n, p) can be approximated by P(np)

(a) In a large number of independent repetitions of a Bernoulli
trial having a small probability of success, the total number of
successes is approximately Poisson distributed with parame-
ter α = np, where n = the number of trials and p = the
probability of success. [17, p 109]
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(b) More specifically, supposeX ∼ B(n, pn). If pn → 0 and npn →
α as n→∞, then for x = 0, 1, 2, . . ., we have35

P [X = x] =

(
n

x

)
pxn(1− pn)

n−x n→∞−−−→ e−α
αk

k!
.

Example 8.46. Consider X ∼ B(n, 1/n). (We have already seen
this in Example 6.51.) For x = 0, 1, 2, . . ., we have

P [X = x] =

(
n

x

)(
1

n

)x(
1− 1

n

)n−x
n→∞−−−→ 1

x!e
.

1

1

e

1
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1
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Figure 11: Pointwise convergence of the Binomial
(
n, α

n

)
pmf to the poisson pmf

when α = 1 and α = 2.

Example 8.47. Consider X ∼ B(n, α/n). For x = 0, 1, 2, . . ., we
have

P [X = x] =

(
n

x

)(α
n

)x(
1− α

n

)n−x n→∞−−−→ e−α
αx

x!
.

35To see this, note that the first x (largest) terms of n! can be bounded by n−x ≤ n−k ≤ n.

Therefore, (n−x)x

x! ≤
(
n
x

)
≤ nx

x! and

P [X = x] =

(
n

x

)
1

nx︸ ︷︷ ︸
→ 1
x!

(npn)
x︸ ︷︷ ︸

→αx

(1− pn)
n︸ ︷︷ ︸

=(1−npnn )n→e−α

(1− pn)
−x︸ ︷︷ ︸

→1

.
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Example 8.48. In one of the New York state lottery games, a
number is chosen at random between 0 and 999. Suppose you play
this game 250 times. Use the Poisson approximation to estimate
the probability that you will never win and compare this with the
exact answer. [3, Q2.41]

Solution : LetW be the number of wins. Then, W ∼ Binomial(250, p)
where p = 1/1000. Hence, P [W = 0] =

(
250
0

)
p0(1−p)250 ≈ 0.7787.

If we approximate W by Λ ∼ P(α). Then we need to set α =
np = 250

1000 = 1
4 . In which case, P [Λ = 0] = e−αα

0

0! = e−α ≈ 0.7788
which is very close to the answer from direct calculation.

Example 8.49. Recall that Bortkiewicz applied the Poisson model
to the number of Prussian cavalry deaths attributed to fatal horse
kicks. Here, indeed, one encounters a very large number of trials
(the Prussian cavalrymen), each with a very small probability of
“success” (fatal horse kick).

8.50. Summary:

X ∼ Support SX pX (x) =

Uniform U(S) S

{ 1
|S| , x ∈ S,
0, otherwise.

Bernoulli(p) {0, 1}


1− p, x = 0,
p, x = 1,
0, otherwise.

Binomial B(n, p) {0, 1, . . . , n}
{ (

n
x

)
px(1− p)n−x, x ∈ {0, 1, 2, . . . , n},

0, otherwise.

Geometric G0(p) N ∪ {0}
{
p(1− p)x, x = 0, 1, 2, . . .
0, otherwise.

Geometric G1(p) N
{
p(1− p)x−1, x = 1, 2, . . .
0, otherwise.

Poisson P(α) N ∪ {0}
{
e−α α

x

x!
, x = 0, 1, 2, . . .

0, otherwise

Table 3: Examples of probability mass functions. Here, p ∈ (0, 1). α > 0.
n ∈ N
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8.4 Some Remarks

8.51. Sometimes, it is useful to define and think of pmf as a vector
p of probabilities.

When you use MATLAB, it is also useful to keep track of the
values of x corresponding to the probabilities in p. This can be
done via defining a corresponding vector x.

Example 8.52. For B
(
3, 1

3

)
, we may define

x = [0, 1, 2, 3]

and

p =

[(
3

0

)(
1

3

)0(2

3

)3

,

(
3

1

)(
1

3

)1(2

3

)2

,

(
3

2

)(
1

3

)2(2

3

)1

,

(
3

3

)(
1

3

)3(2

3

)0
]

=

[
8

27
,
4

9
,
2

9
,

1

27

]
8.53. At this point, we have a couple of ways to define probabil-

ities that are associated with a random variable X

(a) We can define P [X ∈ B] for all possible set B.

(b) For discrete random variable, we only need to define its pmf
pX(x) which is defined as P [X = x] = P [X ∈ {x}].

(c) We can also define the cdf FX(x).

Definition 8.54. If pX(c) = 1, that is P [X = c] = 1, for some
constant c, then X is called a degenerated random variable.
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