ECS315 2014 Quiz 4 Solution
Continue from Quiz 3 and Ex. 8.13
Suppose a RV X has pm $P_{x}(\alpha)= \begin{cases}\frac{6}{11 x}, & x=1,2,3, \\ 0, & \text { otherwise. }\end{cases}$
(1) Find $\mathbb{E} X=\sum_{x} x p_{x}(a)=\sum_{x} x \frac{6}{11 \not x}=3 \times \frac{6}{11}=\frac{18}{11}$

There are three values in the support of x. Therefore, the sum here has three x-values.
(2) Suppose $Y=(x-2)^{2}$.
a) Find $P_{Y}(y)$

$$
\begin{aligned}
& x \quad y=(x-2)^{2} \quad P[Y=0]=P[X=2]=\frac{6}{11 \times 2}=\frac{3}{11} \\
& P[Y=1]=P[x=1]+P[x=3]=1-\frac{3}{11}=\frac{8}{11} \\
& P_{Y}(y)= \begin{cases}3 / 11, & y=0, \\
8 / 11, & y=1, \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

b) Find IEY from $P_{Y}(y)$

$$
=0 \times \frac{3}{11}+1 \times \frac{8}{11}=\frac{8}{11}
$$

c) Find IEY via LOTUS

$$
\begin{aligned}
& =\sum_{x} g(x) p_{x}(a)=\sum_{x}(x-2)^{2} p_{x}(a) \\
& =1 \times \frac{6}{11}+0 \times \frac{3}{11}+1 \times \frac{2}{11}=\frac{8}{11}
\end{aligned}
$$

(3) Suppose $Z=Y+3(x-2)+1$. Find $\mathbb{E} Z$.

$$
\begin{aligned}
\mathbb{E} Z=\mathbb{E}[Y+3(X-2)+1]= & \underbrace{\mathbb{E} Y}_{\frac{8}{11}}+\underbrace{\underbrace{\mathbb{E}}[3 X-6]}_{3 \mathbb{E} X-6}+\underbrace{\mathbb{E}[1]}_{1}=\frac{7}{11} \\
& 3 \times \frac{18}{11}-6
\end{aligned}
$$

Alternatively,

Therefore, $\mathbb{E} Z=\frac{6}{11} \times(-1)+\frac{3}{11} \times(1)+\frac{2}{11} \times 5=\frac{-6+3+10}{11}=\frac{7}{11}$

Evaluate $P[1<x<2]$ for each of the following $R V_{s}$
(a) $x \sim U(0,3)$
$f_{x}(a)$

$$
P[1 \leqslant x \leqslant 2]=1 \times \frac{1}{3}=\frac{1}{3} \approx 0.3333
$$

The height
to have

total area $=1$

Alternatively, the $c d f$ of $U(0,3)$ is

$$
F_{x}(a)= \begin{cases}\frac{x-0}{3-0}, & 0 \leqslant x \leqslant 3 \\ 0, & \text { otherwise }\end{cases}
$$

Therefore, $P[1 \leqslant x \leqslant 2]=F_{x}(2)-F_{x}(1)=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}$
(b) $x \sim \varepsilon(3)$

$$
f_{x}(x)=\left\{\begin{array}{ll}
\lambda e^{-\lambda x}, & x>0, \\
0, & \text { otherwise. }
\end{array}= \begin{cases}3 e^{-3 x}, & x>0, \\
0, & \text { otherwise. }\end{cases}\right.
$$

$$
P[1 \leqslant x \leqslant 2]=\int_{1}^{2} f_{x}(\alpha) d x=\int_{1}^{2} 3 e^{-3 x} d x=\left.\frac{3 e^{-3 x}}{-3}\right|_{1} ^{2}=e^{-3}-e^{-6} \approx 0.0473
$$

Alternatively, the $c d f$ of $\varepsilon(3)$ is

$$
F_{x}(x)= \begin{cases}1-e^{-3 x}, & x>0 \\ 0, & \text { otherwise. }\end{cases}
$$

Therefore, $P[1 \leqslant x \leqslant 2]=F_{x}(2)-F_{x}(1)=\left(1-e^{-6}\right)-\left(1-e^{-3}\right)=e^{-3}-e^{-6}$
(c) $x \sim \mathcal{N}(0,1)$

$$
P[1 \leqslant x \leqslant 2]=\Phi(2)-\Phi(1) \approx 0.97725-0.8413 \approx 0.1359
$$

(d) $x \sim \mathcal{N}(1,3)$

$$
\begin{aligned}
P[1 \leqslant x \leqslant 2] & =\Phi\left(\frac{2-1}{\sqrt{3}}\right)-\Phi\left(\frac{1-1}{\sqrt{3}}\right)=\Phi\left(\frac{1}{\sqrt{3}}\right)-\Phi(0) \approx \Phi(0.58)-0.5 \\
& \approx 0.7190-0.5=0.2190
\end{aligned}
$$

Quiz 6. $\quad x \sim U(-10,10)$. Let $Y=g(x)$.

(a) Find $f_{Y}(2)$.
(1) Find roots) of $g(x)=2 . \Rightarrow x= \pm 3, \pm 7$

(2) Find slopes: at $x=-3,7, \quad g^{\prime}(x)=1$.

$$
\text { at } x=3,-7, \quad g^{\prime}(x)=-1 .
$$

(3)

$$
\begin{aligned}
f_{Y}(2) & =\frac{f_{X}(-7)}{\left|g^{\prime}(-7)\right|}+\frac{f_{X}(-3)}{\left|g^{\prime}(-3)\right|}+\frac{f_{X}(3)}{\left|g^{\prime}(3)\right|}+\frac{f_{X}(7)}{\left|g^{\prime}(7)\right|}=\frac{1 / 20}{|-1|}+\frac{1 / 20}{|1|}+\frac{1 / 20}{|-1|}+\frac{1 / 20}{|1|} \\
& =\frac{1}{20} \times 4=\frac{1}{5} .
\end{aligned}
$$

(b) Find $f_{Y}(1)$.

Find roots) of $g(x)=1 \Rightarrow x= \pm 4, \pm 6$

$$
\begin{aligned}
f_{y}(1) & =\frac{f_{x}(-6)}{\left|g^{\prime}(-6)\right|}+\frac{f_{x}(-4)}{\left|g^{\prime}(-4)\right|}+\frac{f_{x}(4)}{\left|g^{\prime}(4)\right|}+\frac{f_{x}(6)}{\left|g^{\prime}(6)\right|} \\
& =\frac{1 / 20}{|-1|}+\frac{1 / 20}{|1|}+\frac{1 / 20}{|-1|}+\frac{1 / 20}{|1|}=\frac{1}{20} \times 4=\frac{1}{5}
\end{aligned}
$$

(c) Repeat (a) and (b) but use $x \sim \varepsilon(1) . \quad f_{x}(a)= \begin{cases}e^{-x}, & x>0 \\ 0, & \text { otherwise }\end{cases}$
(a)

$$
\begin{aligned}
& f_{Y}(2)=\frac{f_{X}(-7)}{\left|g^{\prime}(-7)\right|}+\frac{f_{X}(-3)}{\left|g^{\prime}(-3)\right|}+\frac{f_{X}(3)}{\left|g^{\prime}(3)\right|}+\frac{f_{X}(7)}{\left|g^{\prime}(7)\right|}=\frac{e^{-3}}{1}+\frac{e^{-7}}{1} \approx 0.0507 \\
& f_{Y}(1)=\frac{f_{X}(-6)}{\left|g^{\prime}(-6)\right|}+\frac{f_{X}(-4)^{0}}{\left|g^{\prime}(-4)\right|}+\frac{f_{X}(4)}{\left|g^{\prime}(4)\right|}+\frac{f_{X}(6)}{\left|g^{\prime}(6)\right|}=\frac{e^{-4}}{1}+\frac{e^{-6}}{1} \approx 0.0208
\end{aligned}
$$

(b)

Quiz 7:

Find the marginal pmfs $P_{X}(x)$ and $P_{Y}(y)$ of two RVs x and Y whose joint punt matrix is

$$
P_{X, Y}=\begin{gathered}
x y \\
0 \\
1 \\
2
\end{gathered}\left[\begin{array}{cccc}
0.1 & 1 & 2 & 3 \\
0 & 0.5 & 0.2 & 0 \\
0 & 0.1 & 0.1 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& P_{Y}(y)=\left\{\begin{array}{cl}
0.1, & y=0, \\
0.6, & y=1, \\
0.3, & y=2, \\
0, & \text { oterwi.e. }
\end{array}\right.
\end{aligned}
$$

