Probability and Random Processes ECS 315

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th

Discrete Random Variable

Office Hours:

Rangsit Library:

Tuesday 16:20-17:20

BKD3601-7:

Thursday 16:00-17:00

Roll a fair dice. Record the result.

$X \sim Uniform(\{1,2,...,6\})$

>> X = randi(6) X =

Again, roll a fair dice. Record the result.

x =

Again, roll a fair dice. Record the result. >> x = randi(6)

X =

Again, roll a fair dice. Record the result.

>> x = randi(6)

x =

Again, roll a fair dice. Record the result.

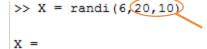
>> x = randi(6)

x =

Again, roll a fair dice. Record the result.

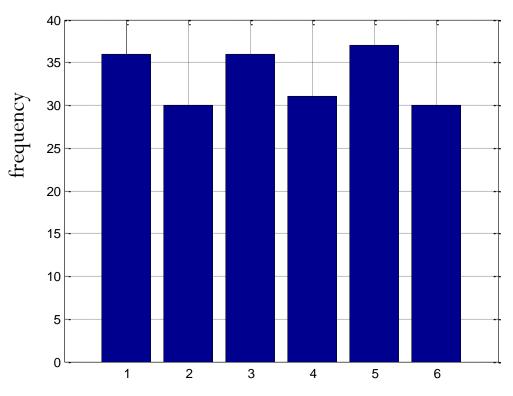
>> X = randi(6)

x =



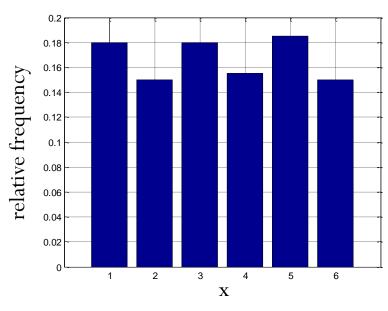
			re	results in a table of size 20×10						
2	5	3	4	5	2	1	2	6	3	
4	3	4	1	5	4	3	1	6	4	
6	4	5	1	3	5	2	2	4	5	
6	2	5	2	4	5	5	2	1	1	
1	5	2	6	1	3	3	3	2	6	
6	1	5	2	1	1	6	1	3	5	
6	2	4	5	4	2	2	6	5	3	
3	1	1	2	5	6	2	6	1	3	
5	1	1	6	6	1	1	3	1	3	
1	5	3	3	1	5	1	3	2	2	
3	5	6	2	4	4	6	3	4	4	
6	2	3	2	3	6	4	6	5	4	
5	6	4	4	1	1	4	3	4	5	
6	1	2	3	3	3	1	1	3	5	
4	3	5	3	1	1	6	5	4	4	
1	3	2	5	5	6	4	3	2	3	
6	5	4	4	2	1	3	2	5	5	
6	5	5	4	4	5	4	3	2	4	
5	2	6	6	1	5	3	1	5	3	
5	3	6	2	4	6	1	1	2	6	

Histogram

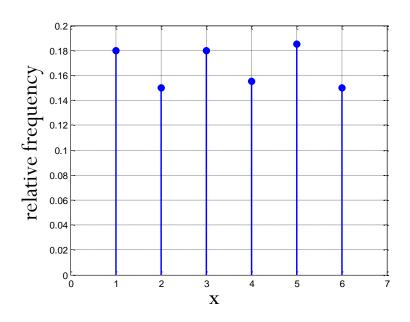


 $[N, x] = hist(reshape(X, 1, prod(size(X))), 1:6) \\ bar(x, N) \\ Grid \ on$

Relative Frequency

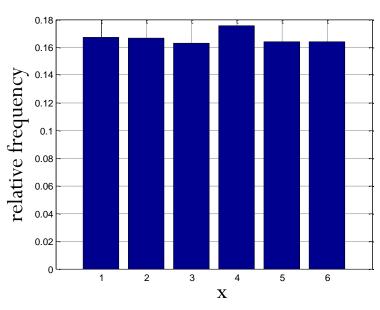


rf = N/prod(size(X))
bar(x,rf)
grid on

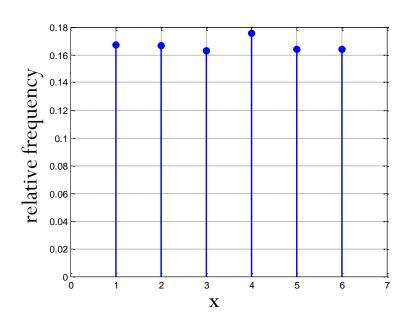


 $\begin{array}{l} stem(x,rf,'filled','LineWidth',1.5) \\ grid \ on \end{array}$

With larger number of samples



rf = N/prod(size(X))
bar(x,rf)
grid on



stem(x,rf,'filled','LineWidth',1.5) grid on

X = randi(6, 100, 100);

Flip an unfair coin 10 times. (The probability of getting heads for each time is 0.3.)

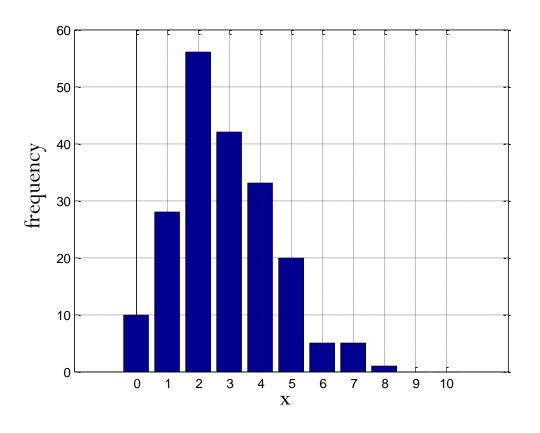
Count the number of heads.

$X \sim binomial(10,0.3)$

```
>> X = binornd(10.0.3)
            x =
Again, flip an unfair coin 10 times. Count #H.
            >> X = binornd(10,0.3)
            x =
Again, flip an unfair coin 10 times. Count #H.
            >> X = binornd(10,0.3)
            x =
Again, flip an unfair coin 10 times. Count #H.
            >> X = binornd(10,0.3)
            X =
Again, flip an unfair coin 10 times. Count #H.
            >> X = binornd(10,0.3)
            X =
Again, flip an unfair coin 10 times. Count #H.
            >> X = binornd(10,0.3)
            X =
```

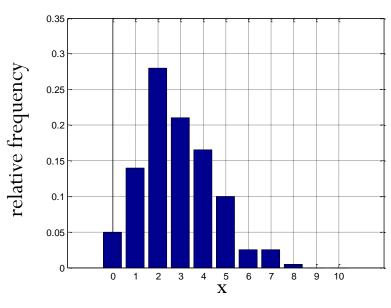
```
>> X = binornd(10, 0.3(20, 10))
                                 Generate X 200 times. Put the
X =
                                 results in a table of size 20 \times 10
                                                         3
                                                                1
```


Histogram: $X \sim binomial(10,0.3)$

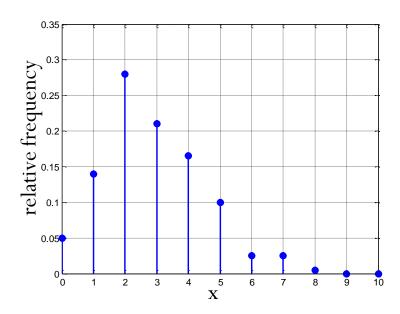


[N, x] = hist(reshape(X, 1, prod(size(X))), 0:10) bar(x,N)Grid on

Relative Freq.: $X \sim binomial(10,0.3)$



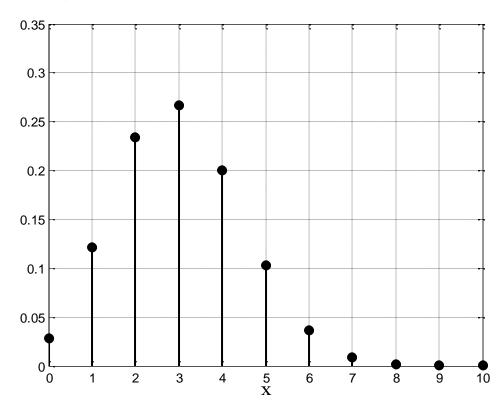
rf = N/prod(size(X))
bar(x,rf)
grid on



stem(x,rf,'filled','LineWidth',1.5) grid on

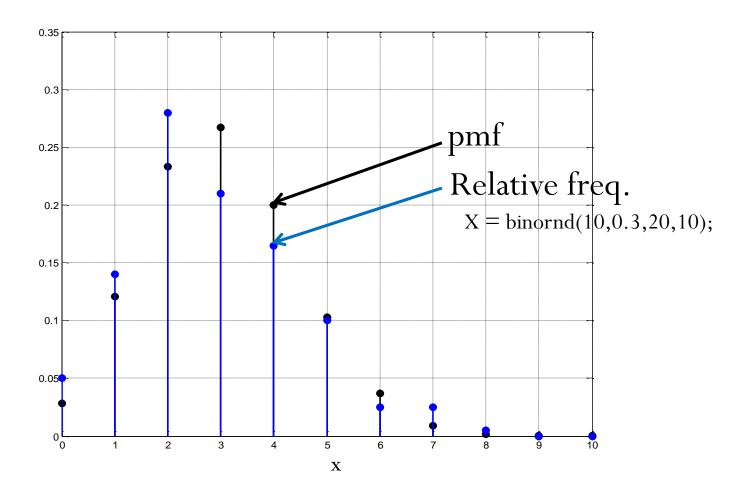
pmf for $X \sim binomial(10,0.3)$

$$p_X(x) = {10 \choose x} 0.3^x (1 - 0.3)^{10 - x}$$

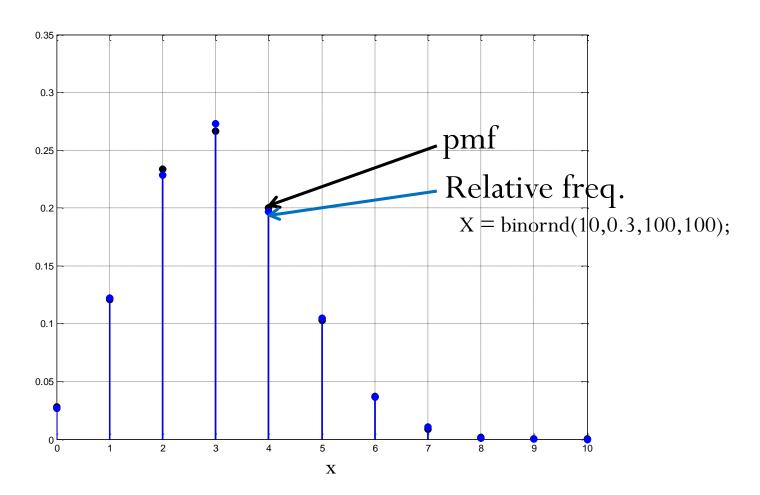


p = binopdf(x,10,0.3)stem(x,p,'k','filled','LineWidth',1.5); grid on

$X \sim binomial(10,0.3)$



$X \sim binomial(10,0.3)$



Publishing Success

- Publishing success is so unpredictable that even if our novel is destined for the best-seller list, numerous publishers could miss the point and send those letters that say thanks but no thanks.
- In fact, many books destined for great success had to survive not just rejection, but repeated rejection.
- J. K. Rowling's first Harry Potter manuscript was rejected by nine publishers.
- Lesson: Suppose four publishers have rejected your manuscript.
 - Your intuition and the bad feeling in the pit of your stomach might say that the rejections by all those publishing experts mean your manuscript is no good.
 - We all know from experience that if several tosses of a coin come up heads, it doesn't mean we are tossing a two-headed coin.

Box Office Success

- Hollywood's unpredictability
- Does luck play a far more important role in box office success (and failure) than people imagine?
- There are reasons for a film's box office performance
 - but those reasons are so complex and the path from green light to opening weekend so vulnerable to unforeseeable and uncontrollable influences that
 - educated guesses about an unmade film's potential aren't much better than flips of a coin.
- Studio executive David Picker:
 - "If I had said yes to all the projects I turned down, and no to all the other ones I took, it would have worked out about the same."

Don't give up

• Successful people in every field are almost universally members of a certain set—the set of people who don't give up.

Poisson Approximation

- Consider n Bernoulli trials.
- Assume success probability for each trial is 1/n.

