\qquad
\qquad
ECS 315: Probability and Random Processes
HW 7- Due: October 24, 4 PM
Lecturer: Prapun Suksompong, Ph.D.

Instructions

(a) This assignment has 5 pages.
(b) (1 pt) Hard-copies are distributed in class. Original pdf file can be downloaded from the course website. Work and write your answers directly on the provided hardcopy/file (not on other blank sheet(s) of paper).
(c) (1 pt) Write your first name and the last three digits of your student ID in the spaces provided on the upper-right corner of this page. Furthermore, for online submission, your file name should start with your 10-digit student ID, followed by a space, the course code, a space, and the assignment number:"5565242231 315 HW4.pdf"
(d) (8 pt) Try to solve all problems.
(e) Late submission will be heavily penalized.

Problem 1. For each description of a random variable X below, indicate whether X is a discrete random variable.
(a) X is the number of websites visited by a randomly chosen software engineer in a day.
(b) X is the number of classes a randomly chosen student is taking.
(c) X is the average height of the passengers on a randomly chosen bus.
(d) A game involves a circular spinner with eight sections labeled with numbers. X is the amount of time the spinner spins before coming to a rest.
(e) X is the thickness of the longest book in a randomly chosen library.
(f) X is the number of keys on a randomly chosen keyboard.
(g) X is the length of a randomly chosen person's arm.

Problem 2 (Quiz4, 2014). Consider a random experiment in which you roll a 20 -sided fair dice. We define the following random variables from the outcomes of this experiment:

$$
X(\omega)=\omega, \quad Y(\omega)=(\omega-5)^{2}, \quad Z(\omega)=|\omega-5|-3
$$

Evaluate the following probabilities:
(a) $P[X=5]$
(b) $P[Y=16]$
(c) $P[Y>10]$
(d) $P[Z>10]$
(e) $P[5<Z<10]$

Problem 3. Consider the sample space $\Omega=\{-2,-1,0,1,2,3,4\}$. Suppose that $P(A)=$ $|A| /|\Omega|$ for any event $A \subset \Omega$. Define the random variable $X(\omega)=\omega^{2}$. Find the probability mass function of X.

Problem 4. Suppose X is a random variable whose pmf at $x=0,1,2,3,4$ is given by $p_{X}(x)=\frac{2 x+1}{25}$.

Remark: Note that the statement above does not specify the value of the $p_{X}(x)$ at the value of x that is not $0,1,2,3$, or 4 .
(a) What is $p_{X}(5)$?
(b) Determine the following probabilities:
(i) $P[X=4]$
(ii) $P[X \leq 1]$
(iii) $P[2 \leq X<4]$
(iv) $P[X>-10]$

Problem 5. The random variable V has pmf

$$
p_{V}(v)= \begin{cases}c v^{2}, & v=1,2,3,4 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Find the value of the constant c.
(b) Find $P\left[V \in\left\{u^{2}: u=1,2,3, \ldots\right\}\right]$.
(c) Find the probability that V is an even number.
(d) Find $P[V>2]$.
(e) Sketch $p_{V}(v)$.
(f) Sketch $F_{V}(v)$. (Note that $F_{V}(v)=P[V \leq v]$.)

Problem 6. The thickness of the wood paneling (in inches) that a customer orders is a random variable with the following cdf:

$$
F_{X}(x)= \begin{cases}0, & x<\frac{1}{8} \\ 0.2, & \frac{1}{8} \leq x<\frac{1}{4} \\ 0.9, & \frac{1}{4} \leq x<\frac{3}{8} \\ 1 & x \geq \frac{3}{8}\end{cases}
$$

Determine the following probabilities:
(a) $P[X \leq 1 / 18]$
(b) $P[X \leq 1 / 4]$
(c) $P[X \leq 5 / 16]$
(d) $P[X>1 / 4]$
(e) $P[X \leq 1 / 2]$
[Montgomery and Runger, 2010, Q3-42]
Remark: Try to calculate these values directly from the cdf. (Avoid converting the cdf to pmf first.)

