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ECS 315: Probability and Random Processes
HW Solution 6 — Due: Not Due

Lecturer: Prapun Suksompong, Ph.D.

Problem 1. In this question, each experiment has equiprobable outcomes
{1,2}, Ay ={1,3}, A3 = {2,3}.

P (A;) P (A)) for all i # j.
= P (A1) P (A2) P (As).

(a) Let Q@ ={1,2,3,4}, A, =
(i) Determine whether P (A; N A;) =
(ii) Check whether P (A; N Ay N As3)
(iii) Are Ay, Ag, and Az independent?

(b) Let Q= {1,2,3,4,5,6}, A, = {1,2,3,4}, Ay = A3 = {4,5,6}.

(1) Check whether P (Al N A2 N Ag) =P (Al) P (Ag) P (Ag)
(ii) Check whether P (A; N A;) = P (A;) P (A;) for all i # j.

(iii) Are Ay, Ag, and Az independent?

Solution:
(a) We have P(A4;) = 1 and P(A; N A;) =

(A;NA;) = P(A;)P(A;) for any i # j.

(i) P(A;
(i) Ay N Ay N A3 = (. Hence, P(A; N Ay N A;z) = 0, which is not the same as

P (A1) P (Ag) P (As).

(iii) No. Although the three conditions for pairwise independence are satisfied, the
last (product) condition for independence among three events is not.

Remark: This counter-example shows that pairwise independence does not imply in-

dependence.
_1
=1

%:gandP(Ag):P(Ag;):—

(b) We have P(A;) =
{4}. Hence, P(A; N Ay N A3) = ¢

(i) AANAyNA; =
P (A1) P (As) P (A3) = %%% = %'
Hence, P (Al N A2 N A ) P (Al) P (AQ) P (Ag)
(i) P(AyN Ag) = P(Ay) =  # P(Ay)P(Aj)
P(A1NAz) = p(4) = § # P(A1)P(As)
P(A1 N Az) = p(4) = § # P(A1)P(As)
Hence, P (A; N A;) # P (A;) P(A;j) for all i # j
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(iii) No. TO be independent, the three events must satisfy four conditions. Here, only
one is satisfied.

Remark: This counter-example shows that one product condition does not imply in-
dependence.

Problem 2 (Majority Voting in Digital Communication). A certain binary communication
system has a bit-error rate of 0.1; i.e., in transmitting a single bit, the probability of receiving
the bit in error is 0.1. To transmit messages, a three-bit repetition code is used. In other
words, to send the message 1, a “codeword” 111 is transmitted, and to send the message 0,
a “codeword” 000 is transmitted. At the receiver, if two or more 1s are received, the decoder
decides that message 1 was sent; otherwise, i.e., if two or more zeros are received, it decides
that message 0 was sent.

Assuming bit errors occur independently, find the probability that the decoder puts out
the wrong message.

[Gubner, 2006, Q2.62]

Solution: Let p = 0.1 be the bit error rate. Let £ be the error event. (This is the event
that the decoded bit value is not the same as the transmitted bit value.) Because majority
voting is used, event £ occurs if and only if there are at least two bit errors. Therefore

3 3
P(€) = (2>p2(1 —p)+ (3)193 =p*(3 - 2p).
When p = 0.1, we have P(€) ~|0.028|.

Problem 3. The circuit in Figure 6.1] operates only if there is a path of functional devices
from left to right. The probability that each device functions is shown on the graph. As-
sume that devices fail independently. What is the probability that the circuit operates?
[Montgomery and Runger, 2010, Ex. 2-34]

0.95

0.95

Figure 6.1: Circuit for Problem

Solution: Let T and B denote the events that the top and bottom devices operate,
respectively. There is a path if at least one device operates. Therefore, the probability that
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the circuit operates is P(T'U B). Note that
P(TuB)=1-P(TUB))=1—-P(T°N B°).
We are told that T°_Il B¢. By their independence,
P(T°N B°) = P(T°)P(B) = (1 — 0.95) x (1 —0.95) = 0.05% = 0.0025.

Therefore,

P(TUB)=1-P(T°N B =1-0.0025 = [0.9975].

Problem 4. A Web ad can be designed from four different colors, three font types, five font
sizes, three images, and five text phrases. A specific design is randomly generated by the
Web server when you visit the site. Let A denote the event that the design color is red and
let B denote the event that the font size is not the smallest one.

(a) Use classical probability to evaluate P(A), P(B) and P(AN B). Show that the two
events A and B are independent by checking whether P(AN B) = P(A)P(B).

(b) Using the values of P(A) and P(B) from the previous part and the fact that A_ll B,
calculate the following probabilities.

(i) P(AUB)
(i) P(AU B
(i) P(A°U B°)

[Montgomery and Runger, 2010, Q2-84]
Solution:

(a) By multiplication rule, there are
Q] =4x3x5x3x5 (6.1)
possible designs. The number of designs whose color is red is given by
[A] =1x3x5x3xH5.

Note that the “4” in (77?) is replaced by “1” because we only consider one color (red).
Therefore,

_1><3><5><3><5_ 1
 4x3x5x3x5 |4

P(A)
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Similarly, |B| =4 x 3 x 4 x 3 x 5 where the “5” in the middle of (?7?) is replaced by
“4” because we can’t use the smallest font size. Therefore,

P(B)_4><3><4><3><5_ 4
C 4x3x5x3x5 |5

For the event AN B, we replace “4” in (??7) by “1” because we need red color and we
replace “5” in the middle of (??) by “4” because we can’t use the smallest font size.
This gives

ANB| 1x3x4x3x5 1x4 [1
PANE) = | _L1x3x4x3x5 1x E:o.z.

Q]  4x3x5x3x5 4x5

Because P(AN B) = P(A)P(B), the events A and B are independent.

1
(i) P(AUB) = P(A)+ P(B)— P(ANB)=14+1_1_ 2_5 —0.85,
(i) Method 1: P(AUB®) =1—-P((AUB%") =1— P(A°N B). Because A_lL B,
we also have A° Il B. Hence, P(A°UB°) =1—P(A°)P(B) =1-32 =2 =

Method 2: From the Venn diagram, note that A U B¢ can be expressed as a
disjoint union: AU B¢ = B°U (AN B). Therefore,
4 14 2
P(AUB®)=P(B°)+ P(ANB)=1—-P(B)+ P(A)P(B)=1— = + 15~ %
Method 3: From the Venn diagram, note that A U B¢ can be expressed as a
disjoint union: AUB® = AU(A® N B¢). Therefore, P(AUB¢) = P(A)+P(A°NB°).
Because A I B, we also have A°_|l B°. Hence,

1 31 2
P(AUB®) = P(A)+P(A°)P(B°) = P(A)+(1 — P(A)) (1 - P(B)) = Z+Zg =z
(iii) Method 1: P(A°UB¢)=1—P((A°UB®)°)=1—-P(ANB)=1-02=
Method 2: From the Venn diagram, note that A°U B¢ can be expressed as a
disjoint union: A°U B® = (A°N B)U (AN B°) U (A°N B°). Therefore,
P(A°UB°)=P(A°NB)+ P(ANB°) + P(A°N B°).
Now, because A_ll B, we also have A°_ll B, A1l B¢, and A°_ll B¢. Hence,
P(A°UB°)=P(A°)P(B)+ P(A)P(B°)+ P (A°) P(B°)
=(1-P(A)P(B)+P(A)(1-P(B)+(1-P(A)(1-P(B)
4 1 3 16 4

+1 ><1
5 4 5

3
1" 571 20 5
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Extra Questions
Here are some optional questions for those who want more practice.

Problem 5. Show that if A and B are independent events, then so are A and B¢, A and
B, and A° and B°.

Solution: To show that two events C7 and (5 are independent, we need to show that
P(CiNCy) = P(Cy)P(Cy).

(a) Note that
P(ANB®) =P(A\ B)=P(A)— P(ANB).

Because A |l B, the last term can be factored in to P(A)P(B) and hence
P(AN B¢ = P(A)— P(A)P(B) = P(A)(1 - P(B)) = P(A)P(B°)

(b) By interchanging the role of A and B in the previous part, we have
P(A°NB)=P(BNA° =P(B)P(A°).

(c) From set theory, we know that A°N B = (AU B)“. Therefore,
PA°NB)=1-P(AUB)=1—-P(A)—P(B)+ P(ANnB),
where, for the last equality, we use
P(AUB)=P(A)+ P(B)—-P(ANDB)
which is discussed in class.
Because A Il B, we have
PA°NB)=1-P(A)—P(B)+P(A)P(B)=(1—-P(A)(1—-P(B))
= P(A°)P(B°).

Remark: By interchanging the roles of A and A° and/or B and B¢, it follows that if any
one of the four pairs is independent, then so are the other three. [Gubner, 2006, p.31]

Problem 6. Anne and Betty go fishing. Find the conditional probability that Anne catches
no fish given that at least one of them catches no fish. Assume they catch fish independently
and that each has probability 0 < p < 1 of catching no fish. [Gubner, 2006, Q2.62]

Hint: Let A be the event that Anne catches no fish and B be the event that Betty catches
no fish. Observe that the question asks you to evaluate P(A|(A U B)).

Solution: From the question, we know that A and B are independent. The event “at
least one of the two women catches nothing” can be represented by AU B. So we have

_P(ANn(AuB)) P(A) _p |1
PAAVE) = =508 ~PA)+PB) -PAPB) -7 |2-p/
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Problem 7. The circuit in Figure [6.2] operates only if there is a path of functional devices
from left to right. The probability that each device functions is shown on the graph. As-
sume that devices fail independently. What is the probability that the circuit operates?
[Montgomery and Runger, 2010, Ex. 2-35]

— 1 0.9 |—
0.95
a 0.9 |_ _| 0.99 b
|— 0.95 J
L 09 |—

Figure 6.2: Circuit for Problem [7]

Solution: The solution can be obtained from a partition of the graph into three columns.
Let L denote the event that there is a path of functional devices only through the three units
on the left. From the independence and based upon Problem [3]

P(L)=1-(1-0.9)%=1-0.1> = 0.999.

Similarly, let M denote the event that there is a path of functional devices only through the
two units in the middle. Then,

P(M)=1—-(1-0.95)?%=1-0.05%=1—0.0025 = 0.9975.

Finally, the probability that there is a path of functional devices only through the one unit
on the right is simply the probability that the device functions, namely, 0.99.

Therefore, with the independence assumption used again, along with similar reasoning
to the solution of Problem ??, the solution is

0.999 x 0.9975 x 0.99 = 0.986537475 ~ | 0.987 |

Problem 8. An article in the British Medical Journal [“Comparison of Treatment of Re-
nal Calculi by Operative Surgery, Percutaneous Nephrolithotomy, and Extracorporeal Shock
Wave Lithotripsy” (1986, Vol. 82, pp. 879892)] provided the following discussion of success
rates in kidney stone removals. Open surgery (OS) had a success rate of 78% (273/350) while
a newer method, percutaneous nephrolithotomy (PN), had a success rate of 83% (289/350).
This newer method looked better, but the results changed when stone diameter was con-
sidered. For stones with diameters less than two centimeters, 93% (81/87) of cases of open
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surgery were successful compared with only 87% (234/270) of cases of PN. For stones greater

than or equal to two centimeters, the success rates were 73% (192/263) and 69% (55/80)

for open surgery and PN, respectively. Open surgery is better for both stone sizes, but less

successful in total. In 1951, E. H. Simpson pointed out this apparent contradiction (known

as Simpson’s Paradox) but the hazard still persists today. Explain how open surgery can be

better for both stone sizes but worse in total. [Montgomery and Runger, 2010, Q2-115]
Solution: First, let’s recall the total probability theorem:

P(A)=P(ANB)+ P (AN B°)
=P(A|B)P(B)+ P(A|B°) P(B°).

We can see that P(A) does not depend only on P (A|B) and P (A|B¢). It also depends on
P(B) and P(B°¢). In the extreme case, we may imagine the case with P(B) = 1 in which
P(A) = P(A|B). At another extreme, we may imagine the case with P(B) = 0 in which
P(A) = P(A|B°). Therefore, depending on the value of P(B), the value of P(A) can be
anywhere between P(A|B) and P(A|B°).

Now, let’s consider events Ay, By, Ay, and By. Let P(A;|B;) = 0.93 and P(A;|Bf) =
0.73.  Therefore, P(A;) € [0.73,0.93]. On the other hand, let P(A3|Bs) = 0.87 and
P(As|BS) = 0.69. Therefore, P(A2) € [0.69,0.87]. With small value of P(B;), the value of
P(A;) can be 0.78 which is closer to its lower end of the bound. With large value of P(B,),
the value of P(A;) can be 0.83 which is closer to its upper end of the bound. Therefore,
even though P(A;|B;) > P(A3|Bs) = 0.87 and P(A;|Bf) > P(As|BS), it is possible that
P(A;) < P(Ay).

In the context of the paradox under consideration, note that the success rate of PN with
small stones (87%) is higher than the success rate of OS with large stones (73%). Therefore,
by having a lot of large stone cases to be tested under OS and also have a lot of small stone
cases to be tested under PN, we can create a situation where the overall success rate of PN
comes out to be better then the success rate of OS. This is exactly what happened in the
study as shown in Table ?77.

Problem 9. Show that
(a) PIANBNC)=P(A) x P(B|A) x P(C|AN B).
(b) P(BNC|A) = P(BJA)P(C|BNA)
Solution:

(a) We can see directly from the definition of P(B|A) that

P(AN B) = P(A)P(B|A).
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Open surgery

sample sample conditional
success failure size percentage success rate
large stone 192 71 263 75% 73%
small stone 81 6 87 25% 93%
overall summary 273 77 350 100% 78%
PN
sample sample conditional
success failure size percentage success rate
large stone 55 25 80 23% 69%
small stone 234 36 270 77% 87%
overall summary 289 61 350 100% 83%

Table 6.1: Success rates in kidney stone removals.

Similarly, when we consider event A N B and event C, we have
P(AnBNC)=P(ANB)P(C|ANB).
Combining the two equalities above, we have

P(ANBNC) = P(A) x P(B|A) x P(C|ANB).

(b) By definition,
P(ANnBNC)
P (A)

P(BNC|A) = .
Substitute P (AN BN C) from part (a) to get

P(A) x P(B|A) x P(C|AN B)
P(A)

P(BNC|A) =

6-8

— P(B|A) x P(C|ANB).



