
ECS 315: Probability and Random Processes 2019/1

HW Solution 3 — Due: September 12, 4 PM

Lecturer: Prapun Suksompong, Ph.D.

Problem 1. If A, B, and C are disjoint events with P (A) = 0.2, P (B) = 0.3 and P (C) = 0.4,
determine the following probabilities:

(a) P (A ∪B ∪ C)

(b) P (A ∩B ∩ C)

(c) P (A ∩B)

(d) P ((A ∪B) ∩ C)

(e) P (Ac ∩Bc ∩ Cc)

[Montgomery and Runger, 2010, Q2-75]
Solution :

(a) Because A, B, and C are disjoint, P (A∪B∪C) = P (A)+P (B)+P (C) = 0.3+0.2+0.4 =
0.9.

(b) Because A, B, and C are disjoint, A∩B∩C = ∅ and hence P (A∩B∩C) = P (∅) = 0 .

(c) Because A and B are disjoint, A ∩B = ∅ and hence P (A ∩B) = P (∅) = 0 .

(d) (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C). By the disjointness among A, B, and C, we have
(A ∩ C) ∪ (B ∩ C) = ∅ ∪ ∅ = ∅. Therefore, P ((A ∪B) ∩ C) = P (∅) = 0 .

(e) From Ac ∩ Bc ∩ Cc = (A ∪ B ∪ C)c, we have P (Ac ∩ Bc ∩ Cc) = 1− P (A ∪ B ∪ C) =
1− 0.9 = 0.1.

Problem 2. The sample space of a random experiment is {a, b, c, d, e} with probabilities
0.1, 0.1, 0.2, 0.4, and 0.2, respectively. Let A denote the event {a, b, c}, and let B denote
the event {c, d, e}. Determine the following:

(a) P (A)

(b) P (B)

(c) P (Ac)

(d) P (A ∪B)
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(e) P (A ∩B)

[Montgomery and Runger, 2010, Q2-55]
Solution :

(a) Recall that the probability of a finite or countable event equals the sum of the proba-
bilities of the outcomes in the event. Therefore,

P (A) = P ({a, b, c}) = P ({a}) + P ({b}) + P ({c})
= 0.1 + 0.1 + 0.2 = 0.4.

(b) Again, the probability of a finite or countable event equals the sum of the probabilities
of the outcomes in the event. Thus,

P (B) = P ({c, d, e}) = P ({c}) + P ({d}) + P ({e})
= 0.2 + 0.4 + 0.2 = 0.8.

(c) Applying the complement rule, we have P (Ac) = 1− P (A) = 1− 0.4 = 0.6.

(d) Note that A ∪B = Ω. Hence, P (A ∪B) = P (Ω) = 1.

(e) P (A ∩B) = P ({c}) = 0.2.

Problem 3. Binomial theorem : For any positive integer n, we know that

(x + y)n =
n∑

r=0

(
n

r

)
xryn−r. (3.1)

(a) What is the coefficient of x12y13 in the expansion of (x + y)25?

(b) What is the coefficient of x12y13 in the expansion of (2x− 3y)25?

(c) Use the binomial theorem (3.3) to evaluate
n∑

k=0

(−1)k
(
n
k

)
.

Solution :

(a) The coefficient of xryn−r is
(
n
r

)
. Here, n = 25 and r = 12. So, the coefficient is(

25
12

)
= 5, 200, 300 .
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(b) We start from the expansion of (a + b)n. Then we set a = 2x and b = −3y:

(a + b)n =
n∑

r=0

(
n

r

)
arbn−r =

n∑
r=0

(
n

r

)
(2x)r(−3y)n−r = .

n∑
r=0

(
n

r

)
2r(−3)n−rxryn−r.

(3.2)
Therefore, the coefficient of xryn−r is

(
n
r

)
2r(−3)n−r. Here, n = 25 and r = 12. So, the

coefficient is
(
25
12

)
212(−3)13 = − 25!

12!13!
212313 = −33959763545702400 .

(c) From (3.3), set x = −1 and y = 1, then we have
n∑

k=0

(−1)k
(
n
k

)
= (−1 + 1)n = 0 .

Problem 4. Let A and B be events for which P (A), P (B), and P (A ∪ B) are known.
Express the following probabilities in terms of the three known probabilities above.

(a) P (A ∩B)

(b) P (A ∩Bc)

(c) P (B ∪ (A ∩Bc))

(d) P (Ac ∩Bc)

Solution :

(a) P (A ∩B) = P (A) + P (B)− P (A ∪B) . This property is shown in class.

(b) We have seen1 in class that P (A ∩Bc) = P (A)−P (A∩B). Plugging in the expression
for P (A ∩B) from the previous part, we have

P (A ∩Bc) = P (A)− (P (A) + P (B)− P (A ∪B)) = P (A ∪B)− P (B) .

Alternatively, we can start from scratch with the set identity A ∪ B = B ∪ (A ∩Bc)
whose union is a disjoint union. Hence,

P (A ∪B) = P (B) + P (A ∩Bc) .

Moving P (B) to the LHS finishes the proof.

(c) P (B ∪ (A ∩Bc)) = P (A ∪B) because A ∪B = B ∪ (A ∩Bc).

1This shows up when we try to derive the formula P (A∪B) = P (A) +P (B)−P (A∩B). The key idea is
that the set A can be expressed as a disjoint union between A∩B and A∩Bc. Therefore, by finite additivity,
P (A) = P (A ∩B) + P (A ∩Bc). It is easier to visualize this via the Venn diagram.
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(d) P (Ac ∩Bc) = 1− P (A ∪B) because Ac ∩Bc = (A ∪B)c.

Extra Questions
Here are some optional questions for those who want more practice.

Problem 5. Binomial theorem : For any positive integer n, we know that

(x + y)n =
n∑

r=0

(
n

r

)
xryn−r. (3.3)

(a) Use the binomial theorem (3.3) to simplify the following sums

(i)
n∑

r=0
r even

(
n
r

)
xr(1− x)n−r

(ii)
n∑

r=0
r odd

(
n
r

)
xr(1− x)n−r

(b) If we differentiate (3.3) with respect to x and then multiply by x, we have
n∑

r=0

r

(
n

r

)
xryn−r = nx(x + y)n−1.

Use similar technique to simplify the sum
∑n

r=0 r
2
(
n
r

)
xryn−r.

Solution :

(a) To deal with the sum involving only the even terms (or only the odd terms), we first
use (3.3) to expand (x+y)n and (x+(−y))n. When we add the expanded results, only
the even terms in the sum are left. Similarly, when we find the difference between the
two expanded results, only the the odd terms are left. More specifically,

n∑
r=0

r even

(
n

r

)
xryn−r =

1

2
((x + y)n + (y − x)n) , and

n∑
r=0
r odd

(
n

r

)
xryn−r =

1

2
((x + y)n − (y − x)n) .

If x + y = 1, then
n∑

r=0
r even

(
n

r

)
xryn−r =

1

2
(1 + (1− 2x)n) , and (3.4a)

n∑
r=0
r odd

(
n

r

)
xryn−r =

1

2
(1− (1− 2x)n) . (3.4b)
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(b)
∑n

r=0 r
2
(
n
r

)
xryn−r = nx

(
x(n− 1)(x + y)n−2 + (x + y)n−1

)
.

Problem 6.

(a) Suppose that P (A) = 1
2

and P (B) = 2
3
. Find the range of possible values for P (A∩B).

Hint: Smaller than the interval [0, 1]. [Capinski and Zastawniak, 2003, Q4.21]

(b) Suppose that P (A) = 1
2

and P (B) = 1
3
. Find the range of possible values for P (A∪B).

Hint: Smaller than the interval [0, 1]. [Capinski and Zastawniak, 2003, Q4.22]

Solution :

(a) We will try to derive general bounds for P (A ∩B).

First, recall2, from the lecture notes, that “P (A∩B) can not exceed P (A) and P (B)”:

P (A ∩B) ≤ min{P (A), P (B)}. (3.5)

On the other hand, we know that

P (A ∪B) = P (A) + P (B)− P (A ∩B). (3.6)

Now, P (A ∪B) is a probability and hence its value must be between 0 and 1:

0 ≤ P (A ∪B) ≤ 1 (3.7)

Combining (3.7) with (3.6) gives

P (A) + P (B)− 1 ≤ P (A ∩B) ≤ P (A) + P (B). (3.8)

The second inequality in (3.8) is not useful because (3.5) gives a better3 bound. So,
we will replace the second inequality with (3.5):

P (A) + P (B)− 1 ≤ P (A ∩B) ≤ min{P (A), P (B)}. (3.9)

Finally, P (A ∩B) is also a probability and hence it must be between 0 and 1:

0 ≤ P (A ∩B) ≤ 1 (3.10)

Combining (3.10) and (3.9), we have

max{(P (A) + P (B)− 1), 0} ≤ P (A ∩B) ≤ min{P (A), P (B), 1}.
2Again, to see this, note that A ∩ B ⊂ A and A ∩ B ⊂ B. Hence, we know that P (A ∩ B) ≤ P (A) and

P (A ∩B) ≤ P (B).
3When we already know that a number is less than 3, learning that it is less than 5 does not give us any

new information.
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Note that number one at the end of the expression above is not necessary because the
two probabilities under minimization can not exceed 1 themselves. In conclusion,

max{(P (A) + P (B)− 1), 0} ≤ P (A ∩B) ≤ min{P (A), P (B)}.

Plugging in the value P (A) = 1
2

and P (B) = 2
3

gives the range

[
1

6
,
1

2

]
.

Note that the upper-bound can be obtained by constructing an example which has
A ⊂ B. The lower-bound can be obtained by considering an example where A∪B = Ω.

(b) We will try to derive general bounds for P (A ∪B).

By monotonicity, because both A and B are subset of A ∪B, we must have

P (A ∪B) ≥ max{P (A), P (B)}.

On the other hand, we know, from the finite sub-additivity property, that

P (A ∪B) ≤ P (A) + P (B).

Therefore,
max{P (A), P (B)} ≤ P (A ∪B) ≤ P (A) + P (B).

Being a probability, P (A ∪B) must be between 0 and 1. Hence,

max{P (A), P (B), 0} ≤ P (A ∪B) ≤ min {(P (A) + P (B)) , 1} .

Note that number 0 is not needed in the minimization because the two probabilities
involved are automatically ≥ 0 themselves.

In conclusion,

max{P (A), P (B)} ≤ P (A ∪B) ≤ min{(P (A) + P (B)), 1}.

Plugging in the value P (A) = 1
2

and P (B) = 1
3
, we have

P (A ∪B) ∈
[

1

2
,
5

6

]
.

The upper-bound can be obtained by making A ⊥ B. The lower-bound is achieved
when B ⊂ A.
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Problem 7. (Classical Probability and Combinatorics) Suppose n integers are chosen
with replacement (that is, the same integer could be chosen repeatedly) at random from
{1, 2, 3, . . . , N}. Calculate the probability that the chosen numbers arise according to some
non-decreasing sequence.

Solution : There are Nn possible sequences. (This is ordered sampling with replace-
ment.) To find the probability, we need to count the number of non-decreasing sequences
among these Nn possible sequences. It takes some thought to realize that this is exactly the
counting problem that we called “unordered sampling with replacement”. In which case, we

can conclude that the probability is

(
n+N−1

n

)
Nn

. The “with replacement” part should be clear

from the question statement. The “unordered” part needs some more thought.
Method 1 : Because the sequence is non-decreasing, the number of times that each of the

integers {1, 2, . . . , N} shows up in the sequence is the only information that characterizes each
sequence. Once we know the quantities, there is only one way to write the non-decreasing
sequence.

Let xi be the number of times that number i shows up in the sequence. The number of
sequences is then the same as the number of solution to the equation x1 + x2 + · · ·+ xN = n
where the xi are all non-negative integers. We have seen in class that this is equivalent to
“unordered sampling with replacement” and the number of solutions is

(
n+N−1

n

)
.

In “unordered sampling with replacement”, we have objects of many types. Here, the
objects are numbers. The types are the values of the numbers. Interestingly, by requiring
the “order” on the sequence, the counting problem become “unordered sampling”.

Method 2 : [DasGupta, 2010, Example 1.14, p. 12] Consider the following construction
of such non-decreasing sequence. Start with n stars and N − 1 bars. There are

(
n+N−1

n

)
arrangements of these. For example, when N = 5 and n = 2, one arrangement is | ∗ || ∗ |.
Now, add spaces between these bars and stars including before the first one and after the
last one. For our earlier example, we have | ∗ | | ∗ | . Now, put number 1 in the leftmost
space. After this position, the next space holds the same value as the previous one if you
pass a ∗. On the other hand, if you pass a | then the value increases by 1. Note that
because there are N − 1 bars, the last space always gets the value N . What you now have
is a sequence of n + N numbers with bars between consecutive distinct numbers and stars
between consecutive equal numbers. For example, our example would gives 1|2 ∗ 2|3|4 ∗ 4|5.
Note that this gives a non-decreasing sequence of n + N numbers. The corresponding non-
decreasing sequence of n numbers for this arrangement of stars and bars is (2,4); that is we
only take the numbers to the right of the stars. Because there are n stars, our sequence will
have n numbers. It will be non-decreasing because it is a sub-sequence of the non-decreasing
n + N sequence. This shows that any arrangement of n stars and N − 1 bars gives one
nondecreasing sequence of n numbers.

Conversely, we can take any nondecreasing sequence of n numbers and combine it with
the full set of numbers {1, 2, 3, . . . , N} to form a set of n+N numbers. Now rearrange these
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numbers in a nondecreasing order. Put a bar between consecutive distinct numbers in this
set and a star between consecutive equal numbers in this set. Note that the number to the
right of each star is an element of the original n-number sequence. This shows that any
nondecreasing sequence of n numbers corresponds to an arrangement of n stars and N − 1
bars.

Combining the two paragraphs above, we now know that the number of non-decreasing
sequences is the same as the number of arrangement of n stars and N − 1 bars, which is(
n+N−1

n

)
.

Remark 1 : There is another method— which will not be discussed here, but can
be inferred by finding the pattern of the sums that lead to the number of non-decreasing
sequences as we increase the value of n— that would interestingly give the number of non-
decreasing sequences as

N∑
kn−1=1

· · ·
k3∑

k2=1

k2∑
k1=1

k1.

This sum can be simplified into
(
n+N−1

n

)
by the “parallel summation formula” which is

well-known but we didn’t discuss in class.
Remark 2 : It is tempting to apply the technique that we used in class to turn the

“order sampling” into “unordered sampling”. That technique was for the sampling without
replacement. Let’s look back at how we turned the “ordered sampling without replacement”
into “unordered sampling without replacement”. Recall that there are (N)n distinct samples
for “ordered sampling without replacement”. When we switch to the “unordered” case, we
see that many of the original samples from the “ordered sampling without replacement” are
regarded as the same in the “unordered” case. In fact, we can form “groups” of samples
whose members are regarded as the same in the “unordered” case. We can then count the
number of groups. In class, we found that the size of any individual group can be calculated
easily from permuting the elements in a sample and hence there are n! members in each
group. This leads us to conclude that there are (N)n/n! =

(
N
n

)
groups.

We are in a seemingly similar situation when we want to turn the “ordered sampling with
replacement” into “unordered sampling with replacement”. We first start with Nn distinct
samples from “ordered sampling with replacement”. Now, we again separate these samples
into groups. Let’s consider an example where n = 3. Then sequences “1 1 2”, “1 2 1”, and
“2 1 1” are put together in the same group in the “unordered” case. Note that the size of
this group is 3. The sequences “1 2 3”, “1 3 2”, “2 1 3”, “2 3 1”, “3 1 2”, and “3 2 1” are in
another group. Note that the size of this group is 6. Therefore, the group sizes are not the
same and hence we can not find the number of groups by Nn/(group size) as in the sampling
without replacement discussed in the previous paragraph.
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