$\qquad$
ECS 315: Probability and Random Processes
HW 3-Due: September 12, 4 PM
Lecturer: Prapun Suksompong, Ph.D.

## Instructions

(a) This assignment has 5 pages.
(b) (1 pt) Hard-copies are distributed in class. Original pdf file can be downloaded from the course website. Work and write your answers directly on the provided hardcopy/file (not on other blank sheet(s) of paper).
(c) (1 pt) Write your first name and the last three digits of your student ID in the spaces provided on the upper-right corner of this page.
(d) (8 pt) Try to solve all non-optional problems.
(e) Late submission will be heavily penalized.

Problem 1. If $A, B$, and $C$ are disjoint events with $P(A)=0.2, P(B)=0.3$ and $P(C)=0.4$, determine the following probabilities:
(a) $P(A \cup B \cup C)$
(b) $P(A \cap B \cap C)$
(c) $P(A \cap B)$
(d) $P((A \cup B) \cap C)$
(e) $P\left(A^{c} \cap B^{c} \cap C^{c}\right)$
[Montgomery and Runger, 2010, Q2-75]

Problem 2. The sample space of a random experiment is $\{a, b, c, d, e\}$ with probabilities $0.1,0.1,0.2,0.4$, and 0.2 , respectively. Let $A$ denote the event $\{a, b, c\}$, and let $B$ denote the event $\{c, d, e\}$. Determine the following:
(a) $P(A)$
(b) $P(B)$
(c) $P\left(A^{c}\right)$
(d) $P(A \cup B)$
(e) $P(A \cap B)$
[Montgomery and Runger, 2010, Q2-55]

Problem 3. Binomial theorem: For any positive integer $n$, we know that

$$
\begin{equation*}
(x+y)^{n}=\sum_{r=0}^{n}\binom{n}{r} x^{r} y^{n-r} . \tag{3.1}
\end{equation*}
$$

(a) What is the coefficient of $x^{12} y^{13}$ in the expansion of $(x+y)^{25}$ ?
(b) What is the coefficient of $x^{12} y^{13}$ in the expansion of $(2 x-3 y)^{25}$ ?
(c) Use the binomial theorem (3.2) to evaluate $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}$.

Problem 4. Let $A$ and $B$ be events for which $P(A), P(B)$, and $P(A \cup B)$ are known. Express the following probabilities in terms of the three known probabilities above.
(a) $P(A \cap B)$
(b) $P\left(A \cap B^{c}\right)$
(c) $P\left(B \cup\left(A \cap B^{c}\right)\right)$
(d) $P\left(A^{c} \cap B^{c}\right)$

## Extra Questions

Here are some optional questions for those who want more practice.

Problem 5. Binomial theorem: For any positive integer $n$, we know that

$$
\begin{equation*}
(x+y)^{n}=\sum_{r=0}^{n}\binom{n}{r} x^{r} y^{n-r} . \tag{3.2}
\end{equation*}
$$

(a) Use the binomial theorem (3.2) to simplify the following sums
(i) $\sum_{\substack{r=0 \\ r \text { even }}}^{n}\binom{n}{r} x^{r}(1-x)^{n-r}$
(ii) $\sum_{\substack{r=0 \\ r \text { odd }}}^{n}\binom{n}{r} x^{r}(1-x)^{n-r}$
(b) If we differentiate (3.2) with respect to $x$ and then multiply by $x$, we have

$$
\sum_{r=0}^{n} r\binom{n}{r} x^{r} y^{n-r}=n x(x+y)^{n-1}
$$

Use similar technique to simplify the sum $\sum_{r=0}^{n} r^{2}\binom{n}{r} x^{r} y^{n-r}$.

## Problem 6.

(a) Suppose that $P(A)=\frac{1}{2}$ and $P(B)=\frac{2}{3}$. Find the range of possible values for $P(A \cap B)$. Hint: Smaller than the interval [0, 1]. [Capinski and Zastawniak, 2003, Q4.21]
(b) Suppose that $P(A)=\frac{1}{2}$ and $P(B)=\frac{1}{3}$. Find the range of possible values for $P(A \cup B)$. Hint: Smaller than the interval [0,1]. [Capinski and Zastawniak, 2003, Q4.22]

Problem 7. (Classical Probability and Combinatorics) Suppose $n$ integers are chosen with replacement (that is, the same integer could be chosen repeatedly) at random from $\{1,2,3, \ldots, N\}$. Calculate the probability that the chosen numbers arise according to some non-decreasing sequence.

