ECS 315: Probability and Random Processes 2019/1 HW Solution 13 - Due: Not Due

Lecturer: Prapun Suksompong, Ph.D.

Problem 1. The input X and output Y of a system subject to random perturbations are described probabilistically by the following joint pmf matrix:
x
$\left.\begin{array}{l}\mathrm{y} \\ 1 \\ 3\end{array} \begin{array}{ccc}2 & 4 & 5 \\ 0.02 & 0.10 & 0.08 \\ 0.08 & 0.32 & 0.40\end{array}\right]$
(a) Evaluate the following quantities:
(i) The marginal pmf $p_{X}(x)$
(ii) The marginal pmf $p_{Y}(y)$
(iii) $\mathbb{E} X$
(iv) $\operatorname{Var} X$
(v) $\mathbb{E} Y$
(vi) $\operatorname{Var} Y$
(vii) $P[X Y<6]$
(viii) $P[X=Y]$
(ix) $\mathbb{E}[X Y]$
(x) $\mathbb{E}[(X-3)(Y-2)]$
(xi) $\mathbb{E}\left[X\left(Y^{3}-11 Y^{2}+38 Y\right)\right]$
(xii) $\operatorname{Cov}[X, Y]$
(xiii) $\rho_{X, Y}$
(b) Find $\rho_{X, X}$
(c) Calculate the following quantities using the values of $\operatorname{Var} X, \operatorname{Cov}[X, Y]$, and $\rho_{X, Y}$ that you got earlier.
(i) $\operatorname{Cov}[3 X+4,6 Y-7]$
(ii) $\rho_{3 X+4,6 Y-7}$
(iii) $\operatorname{Cov}[X, 6 X-7]$
(iv) $\rho_{X, 6 X-7}$

Solution:

(a) The MATLAB codes are provided in the file P_XY_EVarCov.m.
(i) The marginal pmf $p_{X}(x)$ is founded by the sums along the rows of the pmf matrix:

$$
p_{X}(x)= \begin{cases}0.2, & x=1 \\ 0.8, & x=3 \\ 0, & \text { otherwise }\end{cases}
$$

(ii) The marginal pmf $p_{Y}(y)$ is founded by the sums along the columns of the pmf matrix:

$$
p_{Y}(y)= \begin{cases}0.1, & y=2 \\ 0.42, & y=4 \\ 0.48, & y=5 \\ 0, & \text { otherwise }\end{cases}
$$

(iii) $\mathbb{E} X=\sum_{x} x p_{X}(x)=1 \times 0.2+3 \times 0.8=0.2+2.4=2.6$.
(iv) $\mathbb{E}\left[X^{2}\right]=\sum_{x} x^{2} p_{X}(x)=1^{2} \times 0.2+3^{2} \times 0.8=0.2+7.2=7.4$.

So, $\operatorname{Var} X=\mathbb{E}\left[X^{2}\right]-(\mathbb{E} X)^{2}=7.4-(2.6)^{2}=7.4-6.76=0.64$.
(v) $\mathbb{E} Y=\sum_{y} y p_{Y}(y)=2 \times 0.1+4 \times 0.42+5 \times 0.48=0.2+1.68+2.4=4.28$.
(vi) $\mathbb{E}\left[Y^{2}\right]=\sum_{y} y^{2} p_{Y}(y)=2^{2} \times 0.1+4^{2} \times 0.42+5^{2} \times 0.48=19.12$.

So, $\operatorname{Var} Y=\mathbb{E}\left[Y^{2}\right]-(\mathbb{E} Y)^{2}=19.12-4.28^{2}=0.8016$.
(vii) Among the 6 possible pairs of (x, y) shown in the joint pmf matrix, only the pairs $(1,2),(1,4),(1,5)$ satisfy $x y<6$. Therefore, $[X Y<6]=[X=1]$ which implies $P[X Y<6]=P[X=1]=0.2$.
(viii) Among the 6 possible pairs of (x, y) shown in the joint pmf matrix, there is no pair which has $x=y$. Therefore, $P[X=Y]=0$.
(ix) First, we calculate the values of $x \times y$:
$x \backslash y$
1

3 | 2 | 4 | 5 |
| :---: | :---: | :---: |\(\quad\left[\begin{array}{ccc}2 \& 4 \& 5

6 \& 12 \& 15\end{array}\right]\)

Then, each $x \times y$ is weighted (multiplied) by the corresponding probability $p_{X, Y}(x, y)$:

$$
\left.\begin{array}{l}
x \backslash y \backslash \\
1 \\
3
\end{array} \begin{array}{ccc}
2 & 4 & 5 \\
{[0.04} & 0.40 & 0.40 \\
0.48 & 3.84 & 6.00
\end{array}\right]
$$

Finally, $\mathbb{E}[X Y]$ is sum of these numbers. Therefore, $\mathbb{E}[X Y]=11.16$.
(x) First, we calculate the values of $(x-3) \times(y-2)$:

$$
\begin{aligned}
& x \backslash y \\
& 1 \\
& 3
\end{aligned} \begin{array}{ccc}
2 & 4 & 5 \\
{\left[\begin{array}{ccc}
0 & -4 & -6 \\
0 & 0 & 0
\end{array}\right]}
\end{array}
$$

Then, each $(x-3) \times(y-2)$ is weighted (multiplied) by the corresponding probability $p_{X, Y}(x, y)$:

$$
\left.\begin{array}{clccc}
& y-2 & 0 & 2 & 3 \\
x-3 & x \backslash y & 2 & 4 & 5 \\
-2 & 1 \\
0 & 3
\end{array} \begin{array}{ccc}
0 & -0.40 & -0.48 \\
0 & 0 & 0
\end{array}\right]
$$

Finally, $\mathbb{E}[(X-3)(Y-2)]$ is sum of these numbers. Therefore,

$$
\mathbb{E}[(X-3)(Y-2)]=-0.88
$$

(xi) First, we calculate the values of $x\left(y^{3}-11 y^{2}+38 y\right)$:

$y^{3}-11 y^{2}+38 y$	40	40	40
$x \backslash y$	2	4	5
1			
3			

120 \& 120 \& 120\end{array}\right]\)

Then, each $x\left(y^{3}-11 y^{2}+38 y\right)$ is weighted (multiplied) by the corresponding probability $p_{X, Y}(x, y)$:

$$
\begin{aligned}
& x \backslash y \\
& 1 \\
& 3
\end{aligned} \begin{array}{ccc}
2 & 4 & 5 \\
{\left[\begin{array}{ccc}
0.8 & 4.0 & 3.2 \\
9.6 & 38.4 & 48.0
\end{array}\right]}
\end{array}
$$

Finally, $\mathbb{E}\left[X\left(Y^{3}-11 Y^{2}+38 Y\right)\right]$ is sum of these numbers. Therefore,

$$
\mathbb{E}\left[X\left(Y^{3}-11 Y^{2}+38 Y\right)\right]=104 .
$$

(xii) $\operatorname{Cov}[X, Y]=\mathbb{E}[X Y]-\mathbb{E} X \mathbb{E} Y=11.16-(2.6)(4.28)=0.032$.
(xiii) $\rho_{X, Y}=\frac{\operatorname{Cov}[X, Y]}{\sigma_{X} \sigma_{Y}}=\frac{0.032}{\sqrt{0.64} \sqrt{0.8016}}=0.044677$
(b) $\rho_{X, X}=\frac{\operatorname{Cov}[X, X]}{\sigma_{X} \sigma_{X}}=\frac{\operatorname{Var}[X]}{\sigma_{X}^{2}}=1$.
(c)
(i) $\operatorname{Cov}[3 X+4,6 Y-7]=3 \times 6 \times \operatorname{Cov}[X, Y] \approx 3 \times 6 \times 0.032 \approx 0.576$.
(ii) Note that

$$
\begin{aligned}
\rho_{a X+b, c Y+d} & =\frac{\operatorname{Cov}[a X+b, c Y+d]}{\sigma_{a X+b} \sigma_{c Y+d}} \\
& =\frac{a c \operatorname{Cov}[X, Y]}{|a| \sigma_{X}|c| \sigma_{Y}}=\frac{a c}{|a c|} \rho_{X, Y}=\operatorname{sign}(a c) \times \rho_{X, Y} .
\end{aligned}
$$

Hence, $\rho_{3 X+4,6 Y-7}=\operatorname{sign}(3 \times 4) \rho_{X, Y}=\rho_{X, Y}=0.0447$.
(iii) $\operatorname{Cov}[X, 6 X-7]=1 \times 6 \times \operatorname{Cov}[X, X]=6 \times \operatorname{Var}[X] \approx 3.84$.
(iv) $\rho_{X, 6 X-7}=\operatorname{sign}(1 \times 6) \times \rho_{X, X}=1$.

Problem 2. Suppose $X \sim \operatorname{binomial}(5,1 / 3), Y \sim \operatorname{binomial}(7,4 / 5)$, and $X \Perp Y$. Evaluate the following quantities.
(a) $\mathbb{E}[(X-3)(Y-2)]$
(b) $\operatorname{Cov}[X, Y]$
(c) $\rho_{X, Y}$

Solution:

(a) First, because X and Y are independent, we have $\mathbb{E}[(X-3)(Y-2)]=\mathbb{E}[X-3] \mathbb{E}[Y-2]$.

Recall that $\mathbb{E}[a X+b]=a \mathbb{E}[X]+b$. Therefore, $\mathbb{E}[X-3] \mathbb{E}[Y-2]=(\mathbb{E}[X]-3)(\mathbb{E}[Y]-2)$
Now, for $\operatorname{Binomial}(n, p)$, the expected value is $n p$. So,

$$
(\mathbb{E}[X]-3)(\mathbb{E}[Y]-2)=\left(5 \times \frac{1}{3}-3\right)\left(7 \times \frac{4}{5}-2\right)=-\frac{4}{3} \times \frac{18}{5}=-\frac{24}{5}=-4.8
$$

(b) $\operatorname{Cov}[X, Y]=0$ because $X \Perp Y$.
(c) $\rho_{X, Y}=0$ because $\operatorname{Cov}[X, Y]=0$

Problem 3. Suppose Var $X=5$. Find $\operatorname{Cov}[X, X]$ and $\rho_{X, X}$. Solution:
(a) $\operatorname{Cov}[X, X]=\mathbb{E}[(X-\mathbb{E} X)(X-\mathbb{E} X)]=\mathbb{E}\left[(X-\mathbb{E} X)^{2}\right]=\operatorname{Var} X=5$.
(b) $\rho_{X, X}=\frac{\operatorname{Cov}[X, X]}{\sigma_{X} \sigma_{X}}=\frac{\operatorname{Var} X}{\sigma_{X}^{2}}=\frac{\operatorname{Var} X}{\operatorname{Var} X}=1$.

Problem 4. Suppose we know that $\sigma_{X}=\frac{\sqrt{21}}{10}, \sigma_{Y}=\frac{4 \sqrt{6}}{5}, \rho_{X, Y}=-\frac{1}{\sqrt{126}}$.
(a) Find $\operatorname{Var}[X+Y]$.
(b) Find $\mathbb{E}\left[(Y-3 X+5)^{2}\right]$. Assume $\mathbb{E}[Y-3 X+5]=1$.

Solution:

(a) First, we know that $\operatorname{Var} X=\sigma_{X}^{2}=\frac{21}{100}, \operatorname{Var} Y=\sigma_{Y}^{2}=\frac{96}{25}$, and $\operatorname{Cov}[X, Y]=\rho_{X, Y} \times$ $\sigma_{X} \times \sigma_{Y}=-\frac{2}{25}$. Now,

$$
\begin{aligned}
\operatorname{Var}[X+Y] & =\mathbb{E}\left[((X+Y)-\mathbb{E}[X+Y])^{2}\right]=\mathbb{E}\left[((X-\mathbb{E} X)+(Y-\mathbb{E} Y))^{2}\right] \\
& =\mathbb{E}\left[(X-\mathbb{E} X)^{2}\right]+2 \mathbb{E}[(X-\mathbb{E} X)(Y-\mathbb{E} Y)]+\mathbb{E}\left[(Y-\mathbb{E} Y)^{2}\right] \\
& =\operatorname{Var} X+2 \operatorname{Cov}[X, Y]+\operatorname{Var} Y \\
& =\frac{389}{100}=3.89 .
\end{aligned}
$$

Remark: It is useful to remember that

$$
\operatorname{Var}[X+Y]=\operatorname{Var} X+2 \operatorname{Cov}[X, Y]+\operatorname{Var} Y
$$

Note that when X and Y are uncorrelated, $\operatorname{Var}[X+Y]=\operatorname{Var} X+\operatorname{Var} Y$. This simpler formula also holds when X and Y are independence because independence is a stronger condition.
(b) First, we write

$$
Y-a X-b=(Y-\mathbb{E} Y)-a(X-\mathbb{E} X)-\underbrace{(a \mathbb{E} X+b-\mathbb{E} Y)}_{c} .
$$

Now, using the expansion

$$
(u+v+t)^{2}=u^{2}+v^{2}+t^{2}+2 u v+2 u t+2 v t
$$

we have

$$
\begin{aligned}
(Y-a X-b)^{2}= & (Y-\mathbb{E} Y)^{2}+a^{2}(X-\mathbb{E} X)^{2}+c^{2} \\
& -2 a(X-\mathbb{E} X)(Y-\mathbb{E} Y)-2 c(Y-\mathbb{E} Y)+2 a(X-\mathbb{E} X) c .
\end{aligned}
$$

Recall that $\mathbb{E}[X-\mathbb{E} X]=\mathbb{E}[Y-\mathbb{E} Y]=0$. Therefore,

$$
\mathbb{E}\left[(Y-a X-b)^{2}\right]=\operatorname{Var} Y+a^{2} \operatorname{Var} X+c^{2}-2 a \operatorname{Cov}[X, Y]
$$

Plugging back the value of c, we have

$$
\mathbb{E}\left[(Y-a X-b)^{2}\right]=\operatorname{Var} Y+a^{2} \operatorname{Var} X+(\mathbb{E}[(Y-a X-b)])^{2}-2 a \operatorname{Cov}[X, Y] .
$$

Here, $a=3$ and $b=-5$. Plugging these values along with the given quantities into the formula gives

$$
\mathbb{E}\left[(Y-a X-b)^{2}\right]=\frac{721}{100}=7.21
$$

Problem 5. The input X and output Y of a system subject to random perturbations are described probabilistically by the joint $\operatorname{pmf} p_{X, Y}(x, y)$, where $x=1,2,3$ and $y=1,2,3,4,5$. Let \mathbf{P} denote the joint pmf matrix whose i, j entry is $p_{X, Y}(i, j)$, and suppose that

$$
\mathbf{P}=\frac{1}{71}\left[\begin{array}{lllll}
7 & 2 & 8 & 5 & 4 \\
4 & 2 & 5 & 5 & 9 \\
2 & 4 & 8 & 5 & 1
\end{array}\right]
$$

(a) Find the marginal pmfs $p_{X}(x)$ and $p_{Y}(y)$.
(b) Find $\mathbb{E} X$
(c) Find $\mathbb{E} Y$
(d) Find $\operatorname{Var} X$
(e) Find $\operatorname{Var} Y$

Solution: All of the calculations in this question are simply plugging numbers into appropriate formula. The MATLAB codes are provided in the file P_XY_marginal_2.m.
(a) The marginal $\operatorname{pmf} p_{X}(x)$ is founded by the sums along the rows of the pmf matrix:

$$
p_{X}(x)=\left\{\begin{array} { l l }
{ 2 6 / 7 1 , } & { x = 1 } \\
{ 2 5 / 7 1 , } & { x = 2 } \\
{ 2 0 / 7 1 , } & { x = 3 } \\
{ 0 , } & { \text { otherwise } }
\end{array} \quad \approx \left\{\begin{array}{ll}
0.3662, & x=1 \\
0.3521, & x=2 \\
0.2817, & x=3 \\
0, & \text { otherwise }
\end{array}\right.\right.
$$

The marginal pmf $p_{Y}(y)$ is founded by the sums along the columns of the pmf matrix:

$$
p_{Y}(y)=\left\{\begin{array} { l l }
{ 1 3 / 7 1 , } & { y = 1 } \\
{ 8 / 7 1 , } & { y = 2 } \\
{ 2 1 / 7 1 , } & { y = 3 } \\
{ 1 5 / 7 1 , } & { y = 4 } \\
{ 1 4 / 7 1 , } & { y = 5 } \\
{ 0 , } & { \text { otherwise } }
\end{array} \quad \approx \left\{\begin{array}{ll}
0.1831, & y=1 \\
0.1127, & y=2 \\
0.2958, & y=3 \\
0.2113, & y=4 \\
0.1972, & y=5 \\
0, & \text { otherwise }
\end{array}\right.\right.
$$

(b) $\mathbb{E} X=\frac{136}{71} \approx 1.9155$
(c) $\mathbb{E} Y=\frac{222}{71} \approx 3.1268$
(d) $\operatorname{Var} X=\frac{3230}{5041} \approx 0.6407$
(e) $\operatorname{Var} Y=\frac{9220}{5041} \approx 1.8290$

Problem 6. Suppose $X \sim \operatorname{binomial}(5,1 / 3), Y \sim \operatorname{binomial}(7,4 / 5)$, and $X \Perp Y$.
(a) A vector describing the pmf of X can be created by the MATLAB expression:

$$
\mathrm{x}=0: 5 ; \mathrm{pX}=\operatorname{binopdf}(\mathrm{x}, 5,1 / 3) .
$$

What is the expression that would give pY , a corresponding vector describing the pmf of Y ?
(b) Use pX and pY from part (a), how can you create the joint pmf matrix in MATLAB? Do not use "for-loop", "while-loop", "if statement". Hint: Multiply them in an appropriate orientation.
(c) Use MATLAB to evaluate the following quantities. Again, do not use "for-loop", "whileloop", "if statement".
(i) $\mathbb{E} X$
(ii) $P[X=Y]$
(iii) $P[X Y<6]$

Solution: The MATLAB codes are provided in the file P_XY_jointfromMarginal_indp.m.
(a) $y=0: 7 ; p Y=\operatorname{binopdf}(y, 7,4 / 5)$;
(b) $\mathrm{P}=\mathrm{pX} .{ }^{\prime}$ *pY;
(c)
(i) $\mathbb{E} X=1.667$
(ii) $P[X=Y]=0.0121$
(iii) $P[X Y<6]=0.2727$

