ECS 315: Probability and Random Processes2019/1HW Solution 13 — Due: Not DueLecturer: Prapun Suksompong, Ph.D.

Problem 1. The input X and output Y of a system subject to random perturbations are described probabilistically by the following joint pmf matrix:

x	2	4	5
1	0.02	0.10	0.08
3	0.08	0.32	0.40

- (a) Evaluate the following quantities:
 - (i) The marginal pmf $p_X(x)$
 - (ii) The marginal pmf $p_Y(y)$
 - (iii) $\mathbb{E}X$
 - (iv) $\operatorname{Var} X$
 - (v) $\mathbb{E}Y$
 - (vi) $\operatorname{Var} Y$
 - (vii) P[XY < 6]
 - (viii) P[X = Y]
 - (ix) $\mathbb{E}[XY]$
 - (x) $\mathbb{E}[(X-3)(Y-2)]$
 - (xi) $\mathbb{E}[X(Y^3 11Y^2 + 38Y)]$
 - (xii) $\operatorname{Cov}[X,Y]$
 - (xiii) $\rho_{X,Y}$
- (b) Find $\rho_{X,X}$
- (c) Calculate the following quantities using the values of Var X, Cov [X, Y], and $\rho_{X,Y}$ that you got earlier.
 - (i) Cov[3X+4, 6Y-7]

- (ii) $\rho_{3X+4,6Y-7}$
- (iii) Cov[X, 6X 7]
- (iv) $\rho_{X,6X-7}$

Solution:

- (a) The MATLAB codes are provided in the file P_XY_EVarCov.m.
 - (i) The marginal pmf $p_X(x)$ is founded by the sums along the rows of the pmf matrix:

$$p_X(x) = \begin{cases} 0.2, & x = 1\\ 0.8, & x = 3\\ 0, & \text{otherwise.} \end{cases}$$

(ii) The marginal pmf $p_Y(y)$ is founded by the sums along the columns of the pmf matrix:

$$p_{Y}(y) = \begin{cases} 0.1, & y = 2\\ 0.42, & y = 4\\ 0.48, & y = 5\\ 0, & \text{otherwise.} \end{cases}$$

(iii)
$$\mathbb{E}X = \sum_{x} x p_X(x) = 1 \times 0.2 + 3 \times 0.8 = 0.2 + 2.4 = 2.6$$
.

- (iv) $\mathbb{E}[X^2] = \sum_x x^2 p_X(x) = 1^2 \times 0.2 + 3^2 \times 0.8 = 0.2 + 7.2 = 7.4.$ So, Var $X = \mathbb{E}[X^2] - (\mathbb{E}X)^2 = 7.4 - (2.6)^2 = 7.4 - 6.76 = 0.64.$
- (v) $\mathbb{E}Y = \sum_{y} y p_Y(y) = 2 \times 0.1 + 4 \times 0.42 + 5 \times 0.48 = 0.2 + 1.68 + 2.4 = 4.28$.
- (vi) $\mathbb{E}[Y^2] = \sum_{y} y^2 p_Y(y) = 2^2 \times 0.1 + 4^2 \times 0.42 + 5^2 \times 0.48 = 19.12.$ So, Var $Y = \mathbb{E}[Y^2] - (\mathbb{E}Y)^2 = 19.12 - 4.28^2 = \boxed{0.8016}.$
- (vii) Among the 6 possible pairs of (x, y) shown in the joint pmf matrix, only the pairs (1, 2), (1, 4), (1, 5) satisfy xy < 6. Therefore, [XY < 6] = [X = 1] which implies $P[XY < 6] = P[X = 1] = \boxed{0.2}$.
- (viii) Among the 6 possible pairs of (x, y) shown in the joint pmf matrix, there is no pair which has x = y. Therefore, P[X = Y] = 0.
- (ix) First, we calculate the values of $x \times y$:

$$\begin{array}{cccccccc} x \setminus y & 2 & 4 & 5 \\ 1 & \begin{bmatrix} 2 & 4 & 5 \\ 3 & \begin{bmatrix} 6 & 12 & 15 \end{bmatrix} \end{array}$$

Then, each $x \times y$ is weighted (multiplied) by the corresponding probability $p_{X,Y}(x,y)$:

$$\begin{array}{ccccc} x \setminus y & 2 & 4 & 5 \\ 1 & \begin{bmatrix} 0.04 & 0.40 & 0.40 \\ 0.48 & 3.84 & 6.00 \end{bmatrix}$$

Finally, $\mathbb{E}[XY]$ is sum of these numbers. Therefore, $\mathbb{E}[XY] = 11.16$.

(x) First, we calculate the values of $(x - 3) \times (y - 2)$:

$$\begin{array}{ccccc} x \setminus y & 2 & 4 & 5 \\ 1 & \begin{bmatrix} 0 & -4 & -6 \\ 0 & 0 & 0 \end{bmatrix}$$

Then, each $(x-3) \times (y-2)$ is weighted (multiplied) by the corresponding probability $p_{X,Y}(x,y)$:

Finally, $\mathbb{E}\left[(X-3)(Y-2)\right]$ is sum of these numbers. Therefore,

 $\mathbb{E}\left[(X-3)(Y-2)\right] = \boxed{-0.88}.$

(xi) First, we calculate the values of $x(y^3 - 11y^2 + 38y)$:

$y^3 - 11y^2 + 38y$	40	40	40
$x \setminus y$	2	4	5
1	[40]	40	40]
3	120	120	120

Then, each $x(y^3 - 11y^2 + 38y)$ is weighted (multiplied) by the corresponding probability $p_{X,Y}(x,y)$:

$x \setminus y$	2	4	5
1	$\left[0.8\right]$	4.0	3.2
3	9.6	38.4	48.0

Finally, $\mathbb{E}\left[X(Y^3 - 11Y^2 + 38Y)\right]$ is sum of these numbers. Therefore,

$$\mathbb{E}\left[X(Y^3 - 11Y^2 + 38Y)\right] = \boxed{104}.$$

(xii)
$$\operatorname{Cov}[X, Y] = \mathbb{E}[XY] - \mathbb{E}X\mathbb{E}Y = 11.16 - (2.6)(4.28) = 0.032$$
.
(xiii) $\rho_{X,Y} = \frac{\operatorname{Cov}[X,Y]}{\sigma_X \sigma_Y} = \frac{0.032}{\sqrt{0.64}\sqrt{0.8016}} = 0.044677$
(b) $\rho_{X,X} = \frac{\operatorname{Cov}[X,X]}{\sigma_X \sigma_X} = \frac{\operatorname{Var}[X]}{\sigma_X^2} = 1$.
(c)

- (i) $\operatorname{Cov}[3X + 4, 6Y 7] = 3 \times 6 \times \operatorname{Cov}[X, Y] \approx 3 \times 6 \times 0.032 \approx 0.576$
- (ii) Note that

$$\rho_{aX+b,cY+d} = \frac{\operatorname{Cov}\left[aX+b,cY+d\right]}{\sigma_{aX+b}\sigma_{cY+d}}$$
$$= \frac{\operatorname{acCov}\left[X,Y\right]}{|a|\sigma_X|c|\sigma_Y} = \frac{\operatorname{ac}}{|ac|}\rho_{X,Y} = \operatorname{sign}(ac) \times \rho_{X,Y}.$$

Hence, $\rho_{3X+4,6Y-7} = \text{sign}(3 \times 4)\rho_{X,Y} = \rho_{X,Y} = 0.0447$.

- (iii) $\operatorname{Cov}[X, 6X 7] = 1 \times 6 \times \operatorname{Cov}[X, X] = 6 \times \operatorname{Var}[X] \approx 3.84$
- (iv) $\rho_{X,6X-7} = \text{sign}(1 \times 6) \times \rho_{X,X} = 1$.

Problem 2. Suppose $X \sim \text{binomial}(5, 1/3)$, $Y \sim \text{binomial}(7, 4/5)$, and $X \perp Y$. Evaluate the following quantities.

- (a) $\mathbb{E}[(X-3)(Y-2)]$
- (b) $\operatorname{Cov}[X,Y]$
- (c) $\rho_{X,Y}$

Solution:

(a) First, because X and Y are independent, we have $\mathbb{E}[(X-3)(Y-2)] = \mathbb{E}[X-3]\mathbb{E}[Y-2]$. Recall that $\mathbb{E}[aX+b] = a\mathbb{E}[X]+b$. Therefore, $\mathbb{E}[X-3]\mathbb{E}[Y-2] = (\mathbb{E}[X]-3)(\mathbb{E}[Y]-2)$ Now, for Binomial(n, p), the expected value is np. So,

$$\left(\mathbb{E}\left[X\right] - 3\right)\left(\mathbb{E}\left[Y\right] - 2\right) = \left(5 \times \frac{1}{3} - 3\right)\left(7 \times \frac{4}{5} - 2\right) = -\frac{4}{3} \times \frac{18}{5} = \boxed{-\frac{24}{5}} = -4.8$$

- (b) $\operatorname{Cov}[X, Y] = 0$ because $X \perp Y$.
- (c) $\rho_{X,Y} = 0$ because $\operatorname{Cov} [X, Y] = 0$

Problem 3. Suppose Var X = 5. Find Cov [X, X] and $\rho_{X,X}$. Solution:

(a) $\operatorname{Cov}[X, X] = \mathbb{E}[(X - \mathbb{E}X)(X - \mathbb{E}X)] = \mathbb{E}[(X - \mathbb{E}X)^2] = \operatorname{Var} X = [5].$

(b)
$$\rho_{X,X} = \frac{\operatorname{Cov}[X,X]}{\sigma_X \sigma_X} = \frac{\operatorname{Var} X}{\sigma_X^2} = \frac{\operatorname{Var} X}{\operatorname{Var} X} = \boxed{1}$$

Problem 4. Suppose we know that $\sigma_X = \frac{\sqrt{21}}{10}$, $\sigma_Y = \frac{4\sqrt{6}}{5}$, $\rho_{X,Y} = -\frac{1}{\sqrt{126}}$.

- (a) Find $\operatorname{Var}[X+Y]$.
- (b) Find $\mathbb{E}[(Y 3X + 5)^2]$. Assume $\mathbb{E}[Y 3X + 5] = 1$.

Solution:

(a) First, we know that $\operatorname{Var} X = \sigma_X^2 = \frac{21}{100}$, $\operatorname{Var} Y = \sigma_Y^2 = \frac{96}{25}$, and $\operatorname{Cov} [X, Y] = \rho_{X,Y} \times \sigma_X \times \sigma_Y = -\frac{2}{25}$. Now,

$$\operatorname{Var} [X+Y] = \mathbb{E} \left[\left((X+Y) - \mathbb{E} [X+Y] \right)^2 \right] = \mathbb{E} \left[\left((X-\mathbb{E}X) + (Y-\mathbb{E}Y) \right)^2 \right]$$
$$= \mathbb{E} \left[(X-\mathbb{E}X)^2 \right] + 2\mathbb{E} \left[(X-\mathbb{E}X) \left(Y-\mathbb{E}Y \right) \right] + \mathbb{E} \left[(Y-\mathbb{E}Y)^2 \right]$$
$$= \operatorname{Var} X + 2\operatorname{Cov} [X,Y] + \operatorname{Var} Y$$
$$= \boxed{\frac{389}{100}} = 3.89.$$

Remark: It is useful to remember that

 $\operatorname{Var}\left[X+Y\right] = \operatorname{Var}X + 2\operatorname{Cov}\left[X,Y\right] + \operatorname{Var}Y.$

Note that when X and Y are uncorrelated, Var[X + Y] = Var X + Var Y. This simpler formula also holds when X and Y are independence because independence is a stronger condition.

(b) First, we write

$$Y - aX - b = (Y - \mathbb{E}Y) - a(X - \mathbb{E}X) - \underbrace{(a\mathbb{E}X + b - \mathbb{E}Y)}_{c}.$$

Now, using the expansion

$$(u + v + t)^{2} = u^{2} + v^{2} + t^{2} + 2uv + 2ut + 2vt,$$

we have

$$(Y - aX - b)^{2} = (Y - \mathbb{E}Y)^{2} + a^{2}(X - \mathbb{E}X)^{2} + c^{2}$$
$$- 2a(X - \mathbb{E}X)(Y - \mathbb{E}Y) - 2c(Y - \mathbb{E}Y) + 2a(X - \mathbb{E}X)c.$$

Recall that $\mathbb{E}[X - \mathbb{E}X] = \mathbb{E}[Y - \mathbb{E}Y] = 0$. Therefore,

$$\mathbb{E}\left[\left(Y - aX - b\right)^{2}\right] = \operatorname{Var} Y + a^{2} \operatorname{Var} X + c^{2} - 2a \operatorname{Cov} \left[X, Y\right]$$

Plugging back the value of c, we have

$$\mathbb{E}\left[\left(Y - aX - b\right)^{2}\right] = \operatorname{Var} Y + a^{2} \operatorname{Var} X + \left(\mathbb{E}\left[\left(Y - aX - b\right)\right]\right)^{2} - 2a \operatorname{Cov}\left[X, Y\right]\right].$$

Here, a = 3 and b = -5. Plugging these values along with the given quantities into the formula gives

$$\mathbb{E}\left[\left(Y - aX - b\right)^2\right] = \boxed{\frac{721}{100}} = 7.21$$

Problem 5. The input X and output Y of a system subject to random perturbations are described probabilistically by the joint pmf $p_{X,Y}(x, y)$, where x = 1, 2, 3 and y = 1, 2, 3, 4, 5. Let **P** denote the joint pmf matrix whose i, j entry is $p_{X,Y}(i, j)$, and suppose that

$$\mathbf{P} = \frac{1}{71} \begin{bmatrix} 7 & 2 & 8 & 5 & 4 \\ 4 & 2 & 5 & 5 & 9 \\ 2 & 4 & 8 & 5 & 1 \end{bmatrix}$$

- (a) Find the marginal pmfs $p_X(x)$ and $p_Y(y)$.
- (b) Find $\mathbb{E}X$
- (c) Find $\mathbb{E}Y$
- (d) Find $\operatorname{Var} X$
- (e) Find $\operatorname{Var} Y$

Solution: All of the calculations in this question are simply plugging numbers into appropriate formula. The MATLAB codes are provided in the file P_XY_marginal_2.m.

(a) The marginal pmf $p_X(x)$ is founded by the sums along the rows of the pmf matrix:

$$p_X(x) = \begin{cases} 26/71, & x = 1\\ 25/71, & x = 2\\ 20/71, & x = 3\\ 0, & \text{otherwise} \end{cases} \approx \begin{cases} 0.3662, & x = 1\\ 0.3521, & x = 2\\ 0.2817, & x = 3\\ 0, & \text{otherwise.} \end{cases}$$

The marginal pmf $p_Y(y)$ is founded by the sums along the columns of the pmf matrix:

$$p_Y(y) = \begin{cases} 13/71, & y = 1\\ 8/71, & y = 2\\ 21/71, & y = 3\\ 15/71, & y = 4\\ 14/71, & y = 5\\ 0, & \text{otherwise} \end{cases} \approx \begin{cases} 0.1831, & y = 1\\ 0.1127, & y = 2\\ 0.2958, & y = 3\\ 0.2113, & y = 4\\ 0.1972, & y = 5\\ 0, & \text{otherwise.} \end{cases}$$

- (b) $\mathbb{E}X = \frac{136}{71} \approx 1.9155$
- (c) $\mathbb{E}Y = \frac{222}{71} \approx 3.1268$
- (d) Var $X = \frac{3230}{5041} \approx 0.6407$
- (e) Var $Y = \frac{9220}{5041} \approx 1.8290$

Problem 6. Suppose $X \sim \text{binomial}(5, 1/3), Y \sim \text{binomial}(7, 4/5), \text{ and } X \perp Y$.

(a) A vector describing the pmf of X can be created by the MATLAB expression:

x = 0:5; pX = binopdf(x,5,1/3).

What is the expression that would give pY, a corresponding vector describing the pmf of Y?

- (b) Use pX and pY from part (a), how can you create the joint pmf matrix in MATLAB? Do not use "for-loop", "while-loop", "if statement". Hint: Multiply them in an appropriate orientation.
- (c) Use MATLAB to evaluate the following quantities. Again, do not use "for-loop", "while-loop", "if statement".
 - (i) $\mathbb{E}X$
 - (ii) P[X = Y]
 - (iii) P[XY < 6]

Solution: The MATLAB codes are provided in the file P_XY_jointfromMarginal_indp.m.

- (a) |y = 0:7; pY = binopdf(y,7,4/5);
- (b) P = pX.'*pY;

(c)

- (i) $\mathbb{E}X = \boxed{1.667}$
- (ii) P[X = Y] = 0.0121
- (iii) P[XY < 6] = 0.2727