ECS 315: Probability and Random Processes 2019/1

$$
\text { HW } 13 \text { - Due: Not Due }
$$

Lecturer: Prapun Suksompong, Ph.D.

Problem 1. The input X and output Y of a system subject to random perturbations are described probabilistically by the following joint pmf matrix:
x
$\left.\begin{array}{l}\mathrm{y} \\ 1 \\ 3\end{array} \begin{array}{ccc}2 & 4 & 5 \\ 0.08 & 0.32 & 0.40\end{array}\right]$
(a) Evaluate the following quantities:
(i) The marginal pmf $p_{X}(x)$
(ii) The marginal pmf $p_{Y}(y)$
(iii) $\mathbb{E} X$
(iv) $\operatorname{Var} X$
(v) $\mathbb{E} Y$
(vi) $\operatorname{Var} Y$
(vii) $P[X Y<6]$
(viii) $P[X=Y]$
(ix) $\mathbb{E}[X Y]$
(x) $\mathbb{E}[(X-3)(Y-2)]$
(xi) $\mathbb{E}\left[X\left(Y^{3}-11 Y^{2}+38 Y\right)\right]$
(xii) $\operatorname{Cov}[X, Y]$
(xiii) $\rho_{X, Y}$
(b) Find $\rho_{X, X}$
(c) Calculate the following quantities using the values of $\operatorname{Var} X, \operatorname{Cov}[X, Y]$, and $\rho_{X, Y}$ that you got earlier.
(i) $\operatorname{Cov}[3 X+4,6 Y-7]$
(ii) $\rho_{3 X+4,6 Y-7}$
(iii) $\operatorname{Cov}[X, 6 X-7]$
(iv) $\rho_{X, 6 X-7}$

Problem 2. Suppose $X \sim \operatorname{binomial}(5,1 / 3), Y \sim \operatorname{binomial}(7,4 / 5)$, and $X \Perp Y$. Evaluate the following quantities.
(a) $\mathbb{E}[(X-3)(Y-2)]$
(b) $\operatorname{Cov}[X, Y]$
(c) $\rho_{X, Y}$

Problem 3. Suppose $\operatorname{Var} X=5$. Find $\operatorname{Cov}[X, X]$ and $\rho_{X, X}$.

Problem 4. Suppose we know that $\sigma_{X}=\frac{\sqrt{21}}{10}, \sigma_{Y}=\frac{4 \sqrt{6}}{5}, \rho_{X, Y}=-\frac{1}{\sqrt{126}}$.
(a) Find $\operatorname{Var}[X+Y]$.
(b) Find $\mathbb{E}\left[(Y-3 X+5)^{2}\right]$. Assume $\mathbb{E}[Y-3 X+5]=1$.

Problem 5. The input X and output Y of a system subject to random perturbations are described probabilistically by the joint $\operatorname{pmf} p_{X, Y}(x, y)$, where $x=1,2,3$ and $y=1,2,3,4,5$. Let \mathbf{P} denote the joint pmf matrix whose i, j entry is $p_{X, Y}(i, j)$, and suppose that

$$
\mathbf{P}=\frac{1}{71}\left[\begin{array}{lllll}
7 & 2 & 8 & 5 & 4 \\
4 & 2 & 5 & 5 & 9 \\
2 & 4 & 8 & 5 & 1
\end{array}\right]
$$

(a) Find the marginal pmfs $p_{X}(x)$ and $p_{Y}(y)$.
(b) Find $\mathbb{E} X$
(c) Find $\mathbb{E} Y$
(d) Find $\operatorname{Var} X$
(e) Find Var Y

Problem 6. Suppose $X \sim \operatorname{binomial}(5,1 / 3), Y \sim \operatorname{binomial}(7,4 / 5)$, and $X \Perp Y$.
(a) A vector describing the pmf of X can be created by the MATLAB expression:

$$
\mathrm{x}=0: 5 ; \mathrm{pX}=\operatorname{binopdf}(\mathrm{x}, 5,1 / 3) .
$$

What is the expression that would give pY , a corresponding vector describing the pmf of Y ?
(b) Use pX and pY from part (a), how can you create the joint pmf matrix in MATLAB? Do not use "for-loop", "while-loop", "if statement". Hint: Multiply them in an appropriate orientation.
(c) Use MATLAB to evaluate the following quantities. Again, do not use "for-loop", "whileloop", "if statement".
(i) $\mathbb{E} X$
(ii) $P[X=Y]$
(iii) $P[X Y<6]$

