ECS 315: Probability and Random Processes 2019/1HW 13 — Due: Not Due Lecturer: Prapun Suksompong, Ph.D.

Problem 1. The input X and output Y of a system subject to random perturbations are described probabilistically by the following joint pmf matrix:

x V	2	4	5
1	0.02	0.10	0.08
3	0.08	0.32	0.40

- (a) Evaluate the following quantities:
 - (i) The marginal pmf $p_X(x)$
 - (ii) The marginal pmf $p_Y(y)$
 - (iii) $\mathbb{E}X$
 - (iv) $\operatorname{Var} X$

(v) $\mathbb{E}Y$

(vi) $\operatorname{Var} Y$

(vii) P[XY < 6]

(viii) P[X = Y]

(ix) $\mathbb{E}[XY]$

(x)
$$\mathbb{E}[(X-3)(Y-2)]$$

(xi)
$$\mathbb{E}[X(Y^3 - 11Y^2 + 38Y)]$$

(xii) $\operatorname{Cov}[X, Y]$

(xiii) $\rho_{X,Y}$

(b) Find $\rho_{X,X}$

- (c) Calculate the following quantities using the values of Var X, Cov [X, Y], and $\rho_{X,Y}$ that you got earlier.
 - (i) Cov[3X+4, 6Y-7]
 - (ii) $\rho_{3X+4,6Y-7}$
 - (iii) Cov [X, 6X 7]
 - (iv) $\rho_{X,6X-7}$

Problem 2. Suppose $X \sim \text{binomial}(5, 1/3)$, $Y \sim \text{binomial}(7, 4/5)$, and $X \perp Y$. Evaluate the following quantities.

(a) $\mathbb{E}[(X-3)(Y-2)]$

(b) $\operatorname{Cov}[X, Y]$

(c) $\rho_{X,Y}$

Problem 3. Suppose Var X = 5. Find Cov [X, X] and $\rho_{X,X}$.

Problem 4. Suppose we know that $\sigma_X = \frac{\sqrt{21}}{10}$, $\sigma_Y = \frac{4\sqrt{6}}{5}$, $\rho_{X,Y} = -\frac{1}{\sqrt{126}}$. (a) Find $\operatorname{Var}[X+Y]$.

(b) Find $\mathbb{E}[(Y - 3X + 5)^2]$. Assume $\mathbb{E}[Y - 3X + 5] = 1$.

Problem 5. The input X and output Y of a system subject to random perturbations are described probabilistically by the joint pmf $p_{X,Y}(x, y)$, where x = 1, 2, 3 and y = 1, 2, 3, 4, 5. Let **P** denote the joint pmf matrix whose i, j entry is $p_{X,Y}(i, j)$, and suppose that

$$\mathbf{P} = \frac{1}{71} \begin{bmatrix} 7 & 2 & 8 & 5 & 4 \\ 4 & 2 & 5 & 5 & 9 \\ 2 & 4 & 8 & 5 & 1 \end{bmatrix}$$

(a) Find the marginal pmfs $p_X(x)$ and $p_Y(y)$.

(b) Find $\mathbb{E}X$

(c) Find $\mathbb{E}Y$

(d) Find $\operatorname{Var} X$

(e) Find $\operatorname{Var} Y$

Problem 6. Suppose $X \sim \text{binomial}(5, 1/3), Y \sim \text{binomial}(7, 4/5), \text{ and } X \perp Y$.

(a) A vector describing the pmf of X can be created by the MATLAB expression:

$$x = 0:5; pX = binopdf(x,5,1/3).$$

What is the expression that would give pY, a corresponding vector describing the pmf of Y?

- (b) Use pX and pY from part (a), how can you create the joint pmf matrix in MATLAB? Do not use "for-loop", "while-loop", "if statement". Hint: Multiply them in an appropriate orientation.
- (c) Use MATLAB to evaluate the following quantities. Again, do not use "for-loop", "while-loop", "if statement".
 - (i) $\mathbb{E}X$
 - (ii) P[X = Y]
 - (iii) P[XY < 6]