ECS 315: Probability and Random Processes HW Solution 11 — Due: November 21, 4 PM

Lecturer: Prapun Suksompong, Ph.D.

Problem 1 (Yates and Goodman, 2005, Q3.4.5). X is a continuous uniform RV on the interval (-5, 5).

- (a) What is its pdf $f_X(x)$?
- (b) What is its cdf $F_X(x)$?
- (c) What is $\mathbb{E}[X]$?
- (d) What is $\mathbb{E}[X^5]$?
- (e) What is $\mathbb{E}\left[e^X\right]$?

Solution: For a uniform random variable X on the interval (a, b), we know that

$$f_X(x) = \begin{cases} 0, & x < a \text{ or } x > b, \\ \frac{1}{b-a}, & a \le x \le b \end{cases}$$

and

$$F_X(x) = \begin{cases} 0, & x < a, \\ \frac{x-a}{b-a}, & a \le x \le b. \\ 1, & x > b. \end{cases}$$

In this problem, we have a = -5 and b = 5.

(a)
$$f_X(x) = \begin{bmatrix} 0, & x < -5 \text{ or } x > 5, \\ \frac{1}{10}, & -5 \le x \le 5 \end{bmatrix}$$

(b) $F_X(x) = \begin{bmatrix} 0, & x < -5, \\ \frac{x+5}{10}, & a \le x \le b. \\ 1, & x > 5 \end{bmatrix}$
(c) $\mathbb{E}X = \int_{-\infty}^{\infty} x f_X(x) \, dx = \int_{-5}^{5} x \times \frac{1}{10} \, dx = \frac{1}{10} \left[\frac{x^2}{2} \right]_{-5}^{5} = \frac{1}{20} \left(5^2 - (-5)^2 \right) = \boxed{0}.$

In general,

$$\mathbb{E}X = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{1}{b-a} \int_{a}^{b} x dx = \frac{1}{b-a} \left. \frac{x^2}{2} \right|_{a}^{b} = \frac{1}{b-a} \frac{b^2 - a^2}{2} = \frac{a+b}{2}.$$

With a = -5 and b = 5, we have $\mathbb{E}X = 0$.

(d)
$$\mathbb{E}[X^5] = \int_{-\infty}^{\infty} x^5 f_X(x) dx = \int_{-5}^{5} x^5 \times \frac{1}{10} dx = \frac{1}{10} \left. \frac{x^6}{6} \right|_{-5}^{5} = \frac{1}{60} \left(5^6 - (-5)^6 \right) = \boxed{0}.$$

In general,

$$\mathbb{E}\left[X^{5}\right] = \int_{a}^{b} x^{5} \frac{1}{b-a} dx = \frac{1}{b-a} \int_{a}^{b} x^{5} dx = \frac{1}{b-a} \left. \frac{x^{6}}{6} \right|_{a}^{b} = \frac{1}{b-a} \frac{b^{6}-a^{6}}{2}.$$

With a = -5 and b = 5, we have $\mathbb{E}[X^5] = 0$.

(e) In general,

$$\mathbb{E}\left[e^{X}\right] = \int_{a}^{b} e^{x} \frac{1}{b-a} dx = \frac{1}{b-a} \int_{a}^{b} e^{x} dx = \frac{1}{b-a} e^{x} |_{a}^{b} = \frac{e^{b} - e^{a}}{b-a}$$

With $a = -5$ and $b = 5$, we have $\mathbb{E}\left[e^{X}\right] = \boxed{\frac{e^{5} - e^{-5}}{10}} \approx 14.84.$

Problem 2 (Randomly Phased Sinusoid). Suppose Θ is a uniform random variable on the interval $(0, 2\pi)$.

(a) Consider another random variable X defined by

$$X = 5\cos(7t + \Theta)$$

where t is some constant. Find $\mathbb{E}[X]$.

(b) Consider another random variable Y defined by

$$Y = 5\cos(7t_1 + \Theta) \times 5\cos(7t_2 + \Theta)$$

where t_1 and t_2 are some constants. Find $\mathbb{E}[Y]$.

Solution: First, because Θ is a uniform random variable on the interval $(0, 2\pi)$, we know that $f_{\Theta}(\theta) = \frac{1}{2\pi} \mathbf{1}_{(0,2\pi)}(t)$. Therefore, for "any" function g, we have

$$\mathbb{E}\left[g(\Theta)\right] = \int_{-\infty}^{\infty} g(\theta) f_{\Theta}(\theta) d\theta.$$

(a) X is a function of Θ . $\mathbb{E}[X] = 5\mathbb{E}[\cos(7t + \Theta)] = 5\int_0^{2\pi} \frac{1}{2\pi}\cos(7t + \theta)d\theta$. Now, we know that integration over a cycle of a sinusoid gives 0. So, $\mathbb{E}[X] = 0$.

(b) Y is another function of Θ .

$$\mathbb{E}\left[Y\right] = \mathbb{E}\left[5\cos(7t_1 + \Theta) \times 5\cos(7t_2 + \Theta)\right] = \int_0^{2\pi} \frac{1}{2\pi} 5\cos(7t_1 + \theta) \times 5\cos(7t_2 + \theta)d\theta$$
$$= \frac{25}{2\pi} \int_0^{2\pi} \cos(7t_1 + \theta) \times \cos(7t_2 + \theta)d\theta.$$

 Recall^1 the cosine identity

$$\cos(a) \times \cos(b) = \frac{1}{2} \left(\cos\left(a+b\right) + \cos\left(a-b\right) \right).$$

Therefore,

ECS 315

$$\mathbb{E}Y = \frac{25}{4\pi} \int_0^{2\pi} \cos\left(7t_1 + 7t_2 + 2\theta\right) + \cos\left(7\left(t_1 - t_2\right)\right) d\theta$$
$$= \frac{25}{4\pi} \left(\int_0^{2\pi} \cos\left(7t_1 + 7t_2 + 2\theta\right) d\theta + \int_0^{2\pi} \cos\left(7\left(t_1 - t_2\right)\right) d\theta\right).$$

The first integral gives 0 because it is an integration over two period of a sinusoid. The integrand in the second integral is a constant. So,

$$\mathbb{E}Y = \frac{25}{4\pi}\cos\left(7\left(t_1 - t_2\right)\right) \int_0^{2\pi} d\theta = \frac{25}{4\pi}\cos\left(7\left(t_1 - t_2\right)\right) 2\pi = \boxed{\frac{25}{2}\cos\left(7\left(t_1 - t_2\right)\right)}$$

¹This identity could be derived easily via the Euler's identity:

$$\begin{aligned} \cos(a) \times \cos(b) &= \frac{e^{ja} + e^{-ja}}{2} \times \frac{e^{jb} + e^{-jb}}{2} = \frac{1}{4} \left(e^{ja} e^{jb} + e^{-ja} e^{jb} + e^{ja} e^{-jb} + e^{-ja} e^{-jb} \right) \\ &= \frac{1}{2} \left(\frac{e^{ja} e^{jb} + e^{-ja} e^{-jb}}{2} + \frac{e^{-ja} e^{jb} + e^{ja} e^{-jb}}{2} \right) \\ &= \frac{1}{2} \left(\cos\left(a + b\right) + \cos\left(a - b\right) \right). \end{aligned}$$