ECS 315: Probability and Random Processes 2019/1

HW Solution 11 - Due: November 21, 4 PM
Lecturer: Prapun Suksompong, Ph.D.

Problem 1 (Yates and Goodman, 2005, Q3.4.5). X is a continuous uniform RV on the interval ($-5,5$).
(a) What is its pdf $f_{X}(x)$?
(b) What is its cdf $F_{X}(x)$?
(c) What is $\mathbb{E}[X]$?
(d) What is $\mathbb{E}\left[X^{5}\right]$?
(e) What is $\mathbb{E}\left[e^{X}\right]$?

Solution: For a uniform random variable X on the interval (a, b), we know that

$$
f_{X}(x)= \begin{cases}0, & x<a \text { or } x>b \\ \frac{1}{b-a}, & a \leq x \leq b\end{cases}
$$

and

$$
F_{X}(x)= \begin{cases}0, & x<a \\ \frac{x-a}{b-a}, & a \leq x \leq b \\ 1, & x>b\end{cases}
$$

In this problem, we have $a=-5$ and $b=5$.
(a) $f_{X}(x)= \begin{cases}0, & x<-5 \text { or } x>5, \\ \frac{1}{10}, & -5 \leq x \leq 5\end{cases}$
(b) $F_{X}(x)= \begin{cases}0, & x<-5, \\ \frac{x+5}{10}, & a \leq x \leq b . \\ 1, & x>5\end{cases}$
(c) $\mathbb{E} X=\int_{-\infty}^{\infty} x f_{X}(x) d x=\int_{-5}^{5} x \times \frac{1}{10} d x=\left.\frac{1}{10} \frac{x^{2}}{2}\right|_{-5} ^{5}=\frac{1}{20}\left(5^{2}-(-5)^{2}\right)=0$.

In general,

$$
\mathbb{E} X=\int_{a}^{b} x \frac{1}{b-a} d x=\frac{1}{b-a} \int_{a}^{b} x d x=\left.\frac{1}{b-a} \frac{x^{2}}{2}\right|_{a} ^{b}=\frac{1}{b-a} \frac{b^{2}-a^{2}}{2}=\frac{a+b}{2}
$$

With $a=-5$ and $b=5$, we have $\mathbb{E} X=0$.
(d) $\mathbb{E}\left[X^{5}\right]=\int_{-\infty}^{\infty} x^{5} f_{X}(x) d x=\int_{-5}^{5} x^{5} \times \frac{1}{10} d x=\left.\frac{1}{10} \frac{x^{6}}{6}\right|_{-5} ^{5}=\frac{1}{60}\left(5^{6}-(-5)^{6}\right)=0$.

In general,

$$
\mathbb{E}\left[X^{5}\right]=\int_{a}^{b} x^{5} \frac{1}{b-a} d x=\frac{1}{b-a} \int_{a}^{b} x^{5} d x=\left.\frac{1}{b-a} \frac{x^{6}}{6}\right|_{a} ^{b}=\frac{1}{b-a} \frac{b^{6}-a^{6}}{2} .
$$

With $a=-5$ and $b=5$, we have $\mathbb{E}\left[X^{5}\right]=0$.
(e) In general,

$$
\mathbb{E}\left[e^{X}\right]=\int_{a}^{b} e^{x} \frac{1}{b-a} d x=\frac{1}{b-a} \int_{a}^{b} e^{x} d x=\left.\frac{1}{b-a} e^{x}\right|_{a} ^{b}=\frac{e^{b}-e^{a}}{b-a} .
$$

With $a=-5$ and $b=5$, we have $\mathbb{E}\left[e^{X}\right]=\frac{e^{5}-e^{-5}}{10} \approx 14.84$.
Problem 2 (Randomly Phased Sinusoid). Suppose Θ is a uniform random variable on the interval ($0,2 \pi$).
(a) Consider another random variable X defined by

$$
X=5 \cos (7 t+\Theta)
$$

where t is some constant. Find $\mathbb{E}[X]$.
(b) Consider another random variable Y defined by

$$
Y=5 \cos \left(7 t_{1}+\Theta\right) \times 5 \cos \left(7 t_{2}+\Theta\right)
$$

where t_{1} and t_{2} are some constants. Find $\mathbb{E}[Y]$.
Solution: First, because Θ is a uniform random variable on the interval $(0,2 \pi)$, we know that $f_{\Theta}(\theta)=\frac{1}{2 \pi} 1_{(0,2 \pi)}(t)$. Therefore, for "any" function g, we have

$$
\mathbb{E}[g(\Theta)]=\int_{-\infty}^{\infty} g(\theta) f_{\Theta}(\theta) d \theta
$$

(a) X is a function of $\Theta . \mathbb{E}[X]=5 \mathbb{E}[\cos (7 t+\Theta)]=5 \int_{0}^{2 \pi} \frac{1}{2 \pi} \cos (7 t+\theta) d \theta$. Now, we know that integration over a cycle of a sinusoid gives 0 . So, $\mathbb{E}[X]=0$.
(b) Y is another function of Θ.

$$
\begin{aligned}
\mathbb{E}[Y] & =\mathbb{E}\left[5 \cos \left(7 t_{1}+\Theta\right) \times 5 \cos \left(7 t_{2}+\Theta\right)\right]=\int_{0}^{2 \pi} \frac{1}{2 \pi} 5 \cos \left(7 t_{1}+\theta\right) \times 5 \cos \left(7 t_{2}+\theta\right) d \theta \\
& =\frac{25}{2 \pi} \int_{0}^{2 \pi} \cos \left(7 t_{1}+\theta\right) \times \cos \left(7 t_{2}+\theta\right) d \theta
\end{aligned}
$$

Recall ${ }^{1}$ the cosine identity

$$
\cos (a) \times \cos (b)=\frac{1}{2}(\cos (a+b)+\cos (a-b)) .
$$

Therefore,

$$
\begin{aligned}
\mathbb{E} Y & =\frac{25}{4 \pi} \int_{0}^{2 \pi} \cos \left(7 t_{1}+7 t_{2}+2 \theta\right)+\cos \left(7\left(t_{1}-t_{2}\right)\right) d \theta \\
& =\frac{25}{4 \pi}\left(\int_{0}^{2 \pi} \cos \left(7 t_{1}+7 t_{2}+2 \theta\right) d \theta+\int_{0}^{2 \pi} \cos \left(7\left(t_{1}-t_{2}\right)\right) d \theta\right)
\end{aligned}
$$

The first integral gives 0 because it is an integration over two period of a sinusoid. The integrand in the second integral is a constant. So,

$$
\mathbb{E} Y=\frac{25}{4 \pi} \cos \left(7\left(t_{1}-t_{2}\right)\right) \int_{0}^{2 \pi} d \theta=\frac{25}{4 \pi} \cos \left(7\left(t_{1}-t_{2}\right)\right) 2 \pi=\frac{25}{2} \cos \left(7\left(t_{1}-t_{2}\right)\right) .
$$

${ }^{1}$ This identity could be derived easily via the Euler's identity:

$$
\begin{aligned}
\cos (a) \times \cos (b) & =\frac{e^{j a}+e^{-j a}}{2} \times \frac{e^{j b}+e^{-j b}}{2}=\frac{1}{4}\left(e^{j a} e^{j b}+e^{-j a} e^{j b}+e^{j a} e^{-j b}+e^{-j a} e^{-j b}\right) \\
& =\frac{1}{2}\left(\frac{e^{j a} e^{j b}+e^{-j a} e^{-j b}}{2}+\frac{e^{-j a} e^{j b}+e^{j a} e^{-j b}}{2}\right) \\
& =\frac{1}{2}(\cos (a+b)+\cos (a-b)) .
\end{aligned}
$$

