\qquad
\qquad

ECS 315: Probability and Random Processes 2019/1 HW 1 - Due: August 29, 4 PM

Lecturer: Prapun Suksompong, Ph.D.

Instructions

(a) This assignment has 2 pages.
(b) (1 pt) Work and write your answers directly on this sheet (not on another blank sheet of paper). Hard-copies are distributed in class.
(c) (1 pt) Write your first name and the last three digits of your student ID in the spaces provided on the upper-right corner of this page.
(d) $(8 \mathrm{pt})$ Try to solve all problems.
(e) $[$ ENRpr $]=$ Explanation is not required for this problem.
(f) Late submission will be heavily penalized.

Problem 1. (Set Theory) [ENRpr]

(a) In the Venn diagrams below,

shade the region that corresponds to the following events:
(i) A^{c}
(ii) $A \cap B$
(iii) $(A \cap B) \cup C$
(iv) $(B \cup C)^{c}$
(v) $(A \cap B)^{c} \cup C$
[Montgomery and Runger, 2010, Q2-19]
(b) Let $\Omega=\{0,1,2,3,4,5,6,7\}$, and put $A=\{1,2,3,4\}, B=\{3,4,5,6\}$, and $C=\{5,6\}$.

Find
(i) $A \cup B$
(ii) $A \cap B$
(iii) $A \cap C$
(iv) A^{c}
(v) $B \backslash A$

Problem 2. [ENRpr] For each of the sets provided in the first column of the table below, indicate (by putting a $\mathrm{Y}(\mathrm{es})$ or an $\mathrm{N}(\mathrm{o})$ in the appropriate cells of the table) whether it is "finite", "infinite", "countable", "countably infinite", "uncountable".

Sets	Finite	Infinite	Countable	Countably Infinite	Uncountable
$\{1\}$					
$\{1,2\}$					
$[1,2]$					
$[1,2] \cup[-1,0]$					
$\{1,2,3,4\}$					
the power set of $\{1,2,3,4\}$					
the set of all real numbers					
the set of all real- valued x satisfy- ing cos $x=0$					
the set of all in- tegers					
$(-\infty, 0]$					

