ECS 315: In-Class Exercise \# 24 - Sol

Instructions

1. Separate into groups of no more than three students each.
2. [ENRE] Explanation is not required for this exercise.
3. Do not panic.

Date: $\underline{2} \underline{1} / \underline{1} \underline{1} / 2019$		
Name	ID	
(anas asit)		

1) Suppose the pmf of a random variable X is given by

$$
p_{X}(x)= \begin{cases}0.1, & x=2 \\ c, & x=4 \\ 0, & \text { otherwise }\end{cases}
$$

Let Y be another random variable. Assume that X and Y are i.i.d.
Find
a) $c=0.9$

$$
\operatorname{pmf} \Rightarrow " \Sigma=1 " \Rightarrow 0.1+c=1 \Rightarrow c=0.9 \Rightarrow p_{X}(x)=\left\{\begin{array}{cc}
0.1, & x=2 \\
0.9, & x=4 \\
0, & \text { otherwise }
\end{array}\right.
$$

b) Their joint pmf matrix $\mathbf{P}_{X, Y}$.
X and Y are independent.
$p_{X, Y}(x, y) \stackrel{\square}{=} p_{X}(x) p_{Y}(y)$
$p_{Y}(y)=\left\{\begin{array}{cc}0.1, & y=2, \\ 0.9, & y=4, \\ 0, & \text { otherwise } .\end{array}\right.$

$$
\left.\begin{array}{l}
x \backslash y \\
\boldsymbol{P}^{2} \\
\mathrm{P}_{X, Y}
\end{array}=\begin{array}{ll}
2 & 4 \\
4
\end{array}\left[\begin{array}{ll}
p_{X}(2) p_{Y}(2) & p_{X}(2) p_{Y}(4) \\
p_{X}(4) p_{Y}(2) & p_{X}(4) p_{Y}(4)
\end{array}\right]=\left[\begin{array}{ll}
(0.1)(0.1) & (0.1)(0.9) \\
(0.9)(0.1) & (0.9)(0.9)
\end{array}\right]=\begin{array}{ccc}
x \backslash y & 2 & 4 \\
2 & {\left[\begin{array}{ll}
0.01 & 0.09 \\
4 & 0.09
\end{array}\right.} & 0.81
\end{array}\right]
$$

2) Random variables X and Y are independent. Their joint pmf matrix is

Find the values of the unknown constants:

$$
\begin{aligned}
a=0.2, \quad b=0.18, \quad c=\underline{0.3} . \\
p_{X, Y}(-1,2)=p_{X}(-1) p_{Y}(2) \\
0.08=(0.08+0.12+a)(0.08+0.12) \\
a=0.2
\end{aligned} \quad \begin{aligned}
" \Sigma & =1 " \\
1 & =0.08+0.12+0.2+0.12+0.18+c \\
c & =0.3
\end{aligned}
$$

