ECS 315: In-Class Exercise \# 14-Sol

Instructions

1. Separate into groups of no more than three students each. The group cannot be the same as any of your former groups after the midterm.
2. [ENRE] Explanation is not required for this exercise.
3. Do not panic.

Date: 1 I / 1 0 / 2019

Name	ID		
Prapun aditi			
	5	5	5

Consider the random variable specified in each part below.
i) Write down its (minimal) support.
ii) Find $P[X=0]$. Your answer should be of the form $0 . \mathrm{XXXX}$.
iii) Find $P[X=2]$. Your answer should be of the form 0.XXXX.

	(minimal) support	$P[X=0]$	$P[X=2]$
$\begin{gathered} X \sim \mathcal{U}(\{-2,0,2\}) \\ X \sim \operatorname{Uniform}(S) \end{gathered}$	The minimal support of a uniform $R V$ is the set S being specified. Here, $S=\{-2,0,2\}$.	$p_{X}(x)=\left\{\begin{array}{cc} \frac{1}{\|S\|}, & x \in S, \\ 0, & \text { otherwise } . \end{array}\right.$ Here, $\|S\|=3$. Because $0 \in S$, we have $p_{X}(0)=\frac{1}{3}$. Therefore, $P[X=0]=\frac{1}{3} \approx 0.3333 .$	Because $2 \in S$, we have $p_{X}(2)=\frac{1}{3}$. Therefore, $P[X=2]=\frac{1}{3} \approx 0.3333 .$
$\begin{gathered} X \sim \operatorname{Bernoulli}\left(\frac{1}{4}\right) \\ X \sim \operatorname{Bernoulli}(p) \end{gathered}$	The (minimal) support of any Bernoulli RV is $\{0,1\}$.	$\begin{aligned} & p_{X}(x)=\left\{\begin{array}{cc} 1-p, & x=0, \\ p, & x=1, \\ 0, & \text { otherwise. } \end{array}\right. \\ & \text { Here, } p=\frac{1}{4} . \\ & P[X=0]=p_{X}(0)=1-p \\ & \\ & =1-\frac{1}{4}=\frac{3}{4}=0.7500 . \end{aligned}$	$P[X=2]=p_{X}(2)=0.0000$.
$\begin{aligned} & X \sim \mathcal{B}(4,0.6) \\ & X \sim \operatorname{Binomial}(n, p) \end{aligned}$	The (minimal) support of a Binomial RV is $\{0,1, \ldots, n\}$. Here, $n=4$. Therefore, the (minimal) support is $\{0,1,2,3,4\}$.	$\left.\begin{array}{rl} p_{X}(x) & =\left\{\begin{array}{lc} n \\ x \end{array}\right) p^{x}(1-p)^{n-x}, \\ 0, & x=0,1,2, \ldots, n, \\ \text { otherwise } . \end{array}\right\} \begin{aligned} \text { Here, } n & =4 \text { and } p=0.6 . \\ p_{X}(x) & =\left\{\begin{array}{cc} 4 \\ x \end{array}\right) 0.6^{x}(1-0.6)^{4-x}, \\ 0, & x=0,1,2,3,4, \\ 0, & \text { otherwise } . \end{aligned}$ Therefore $\begin{aligned} P[X=0] & =p_{X}(0)=\binom{4}{0} 0.6^{0}(1-0.6)^{4} \\ & =0.4^{4}=0.0256 \end{aligned}$	$\begin{aligned} P[X=2] & =p_{X}(2) \\ & =\binom{4}{2} 0.6^{2}(1-0.6)^{2} \\ & =6 \times 0.6^{2} \times 0.4^{2} \\ & =0.3456 \end{aligned}$

