ECS 315: In-Class Exercise \# 13-Sol

Instructions

1. Separate into groups of no more than three students each. The group cannot be the same as any of your former groups after the midterm.
2. [ENRE] Explanation is not required for this exercise.
3. Do not panic.

Date: $\underline{1} \underline{5} / \underline{1} \underline{0} / 2019$			
Name	ID		
Prapun	5	5	

1. Consider a random variable X whose pmf is given by

$$
p_{X}(x)= \begin{cases}0.2, & x=-1 \\ c, & x=1,3 \\ 0, & \text { otherwise }\end{cases}
$$

a. Find the constant c.

$$
\begin{aligned}
" \Sigma=1 " \Rightarrow p_{X}(-1)+p_{X}(1)+p_{X}(3) & =1 \\
0.2+c+c & =1 \\
c & =0.4
\end{aligned}
$$

b. Plot the cdf of this random variable.

Recall that the cdf can be derived from the pmf by using the $p_{x}(x)$ as the jump amount at x.
2. Consider a random variable X whose cdf is given by

$$
F_{X}(x)=\left\{\begin{array}{ll}
0, & x<0, \\
0.2, & 0 \leq x<3 \\
1, & x \geq 3
\end{array}, \text { At } x=0, \text { there is a jump of size } 0.2 .\right.
$$

a. Find $P[X \leq 1]$.

By definition, $P[X \leq 1]=F_{X}(1)=0.2$.
b. Find $P[X>1]$.

Because $[X>1]$ and $[X \leq 1]$ are opposite (complementary) events, we know that

$$
P[X>1]=1-P[X \leq 1]=1-0.2=0.8
$$

c. Plot the pmf of X.

For discrete RV, the pmf can be derived from the jump amounts in the cdf plot.
Here, the jumps in the cdf happen twice: at $x=0$ and $x=3$. The jump amounts are 0.2 and 0.8 , respectively.
Therefore, $p_{X}(x)=\left\{\begin{aligned} & 0.2, x=0, \\ & 0.8, x=2,3 \\ & 0, \\ & \text { otherwise } .\end{aligned}\right.$

