ECS 315: Probability and Random Processes 2019/1
HW Solution 7 — Due: October 24, 4 PM

Lecturer: Prapun Suksompong, Ph.D.

Problem 1. For each description of a random variable X below, indicate whether X is a

discrete random variable.

(a) X is the number of websites visited by a randomly chosen software engineer in a day.

(b) X is the number of classes a randomly chosen student is taking.

(c) X is the average height of the passengers on a randomly chosen bus.
)

(d) A game involves a circular spinner with eight sections labeled with numbers. X is the
amount of time the spinner spins before coming to a rest.

(e) X is the thickness of the longest book in a randomly chosen library.
(f) X is the number of keys on a randomly chosen keyboard.
(g) X is the length of a randomly chosen person’s arm.

Solution:We consider the number of possibilities for the values of X in each part. If the
collection of possible values is countable (finite or countably infinite), then we conclude that
the random variable is discrete. Otherwise, the random variable is not discrete. Therefore,
the X defined in parts (a), (b), and (f) are discrete. The X defined in other parts are not
discrete.

Problem 2 (Quiz4, 2014). Consider a random experiment in which you roll a 20-sided fair
dice. We define the following random variables from the outcomes of this experiment:

Xw) =w, YW =(w-5)? Zw)=|w-5-3
Evaluate the following probabilities:
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Solution: In this question, Q = {1,2,3,...,20} because the dice has 20 sides. All twenty

outcomes are equally-likely because the dice is fair. So, the probability of each outcome is
1.
2_0.

1
P({w}) = %0 for any w € .

(a) From X (w) = w, we have X (w) =5 if and only if w = 5.

1
Therefore, P[X =5 = P ({5}) = % |
(b) From Y (w) = (w — 5)%, we have Y (w) = 16 if and only if w=4+4+5=1or 9.
1
Therefore, P[Y =16] = P ({1,9}) = & = ol

(c) From Y (w) = (w — 5)%, we have Y (w) > 10 if and only if (w — 5)? > 10.
To check this, it may be more straight-forward to calculate Y (w) at all possible values

of w:

w |1 ]2]3]4][5]6[7|8[9 10|11 [12|13][14] 15|16 | 17 [ 18 | 19 | 20
Y(w)[16[9]4][1[0[1][4]9[16]25]36|49|64]81]100 | 121 | 144 | 169 | 196 | 225
From the table, the values of w that satisfy the condition Y (w) > 10 are 1,9, 10, 11, . . ., 20.
Therefore, P[Y > 10] = P ({1,9,10,11,...,20}) ;—3 |

(d) The values of w that satisfy |w — 5| —3 > 10 are 19 and 20.
To see this, it is straight-forward to calculate Z(w) at all possible values of w:

w123 45|67 [8|9]10|11[12]13|14[15|16[17]18|19]20
Zw)|1]o|-1]-2]-3]-2|-1]of[1]2[3[4]|5]6][7|8]9][10]11]12
Therefore, P[Z > 10] = P ({19,20}) = 2 = 1—10 |

(e) The values of w that satisfy 5 < |w — 5| — 3 < 10 are 14, 15,16, 17.
1
Therefore, P[5 < Z < 10] = P ({14,15,16,17}) = 5 = .
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Problem 3. Consider the sample space Q = {—2,—1,0,1,2,3,4}. Suppose that P(A) =
|A|/|2] for any event A C . Define the random variable X (w) = w?. Find the probability
mass function of X.

Solution: The random variable maps the outcomes w = —2,—1,0, 1,2, 3,4 to numbers
x=4,1,0,1,4,9, 16, respectively. Therefore,

px (0)=P{w: X(w)=0})=P{0}) ==

px ()= P(fw: X(@) = 1) = P({-1,1}) = 2,
px (4) = P(fo: X(w) = 1)) = P({-2,2)) = 2,
px (9) = P(fw: X(w) = 9h) = P({3}) = =, and
x (16) = P ({w: X(w) = 16}) = P({4}) = =.

Combining the results above, we get the complete pmf:

%, x=0,9,16,
bx (x) = 79 T = 174a
0, otherwise.
Problem 4. Suppose X is a random variable whose pmf at x = 0,1,2,3,4 is given by
px(x) = —2‘%1-

Remark: Note that the statement above does not specify the value of the px(x) at the
value of x that is not 0,1,2,3, or 4.

(a) What is px(5)?

(b) Determine the following probabilities:
(i)
(i)
(iii)

(iv)

Solution:

<
| |

Pl
P[X <
P2<X <4
PIX >

10]

(a) First, we calculate

4 4
20 +1 14+34+5+7+9 25
Y= 32 - G-t

25 25 25
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Therefore, there can’t be any other x with px(x) > 0. At x = 5, we then conclude
that px(5) = |0.| The same reasoning also implies that px(z) = 0 at any x that is not
0,1,2,3, or 4.

(b) Recall that, for discrete random variable X, the probability
P [some condition(s) on X]

can be calculated by adding px(x) for all z in the support of X that satisfies the given
condition(s).

() PIX =4 = px(d) = 2588 = | 2

25 25
. 4
(i) P[X <1]=px(0) +px(1) = ZFH + 25H = o+ & = o
12
(i) P2<X <4]=px(2)+px(3) = 255 + 255 = o+ 5 = | 5

(iv) P[X > —10] =|1] because all the x in the support of X satisfies z > —10.

Problem 5. The random variable V' has pmf

(v) = cv?, v=1,23,4,
Py iv)= 0, otherwise.

(a) Find the value of the constant c.
(b) Find P[V € {u?:u=1,2,3,...}].
Find the probability that V' is an even number.

C

)
)
(c)
(d) Find P[V > 2.
e) Sketch py (v).
)

(
(f) Sketch Fy(v). (Note that Fy (v) = P[V <w].)
Solution: [Y&G, Q2.2.3]

(a) We choose ¢ so that the pmf sums to one:

va(v) =c(1” +2° + 3% +4%) = 30c = 1.

Hence, ¢ =[1/30|.
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b) PIVe{u? u=1,23,.}=P[Ve{l,49,16 25} = py(1) +py(d) = c(1% + 42) =
17/30].

(c) P[V even| = py(2) + py(4) = c¢(2* + 4%) = 20/30 =|2/3|.

(d) PV >2]=pv(3)+py(4) =c(32 +4%) =25/30 = |5/6 |

(e) See Figure 77 for the sketch of py (v):
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Figure 7.1: Sketch of py(v) for Question

(f) See Figure ?? for the sketch of Fy (v):
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Figure 7.2: Sketch of Fy (v) for Question
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Problem 6. The thickness of the wood paneling (in inches) that a customer orders is a
random variable with the following cdf:

0, :c<§,
02, i<z<!
Fx(x)= T8~ g’
x(@) 09, 1<z<3i
1 :EZ%.

Determine the following probabilities:

(a) P[X <1/18]
(

b) P[X < 1/4]

(d

) P
) P

(c) P[X <5/16]
) P[X >1/4]
) P

(X <1/2]

(e

[Montgomery and Runger, 2010, Q3-42]

Remark: Try to calculate these values directly from the cdf. (Avoid converting the cdf
to pmlf first.)

Solution:

(a) P[X <1/18] = Fx(1/18) =[0] because <t

(b) P[X <1/4] = Fx(1/4) =[0.9]

(¢) P[X <5/16] = Fx(5/16) = because + < 2 < 3.

(d) P[X >1/4=1-P[X <1/4=1- Fx(1/4)=1-09=[0.1].
(e) P[X <1/2] = Fx(1/2) =|1] because 1 > 2.

Alternatively, we can also derive the pmf first and then calculate the probabilities.
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Problem 1. [F2013/1] For each of the following random variables, find P [1 < X < 2].
(a) X ~ Binomial(3,1/3)
(b) X ~ Poisson(3)

Solution:

(a) Because X ~ Binomial(3,1/3), we know that X can only take the values 0, 1, 2, 3.
Only the value 2 satisfies the condition given. Therefore, P[1 < X <2] = P[X =2| =
px(2). Recall that the pmf for the binomial random variable is

PX(SU)Z(

forx =0,1,2,3,...,n. Here, it is given that n = 3 and p = 1/3. Therefore,

= (Y (-2) 012 1

(b) Because X ~ Poisson(3), we know that X can take the values 0, 1, 2, 3, .... Asin the
previous part, only the value 2 satisfies the condition given. Therefore, P[1 < X < 2] =
P[X = 2] = px(2). Recall that the pmf for the Poisson random variable is

n
i

)pm )

for x =0,1,2,3,.... Here, it is given that a = 3. Therefore,

Problem 2. Arrivals of customers at the local supermarket are modeled by a Poisson process
with a rate of A = 2 customers per minute. Let M be the number of customers arriving
between 9:00 and 9:05. What is the probability that M < 27

Solution: Here, we are given that M ~ P(a) where @ = \T' = 2 x 5 = 10. Recall that,
for M ~ P(«a), we have

e‘o‘%, m € {0,1,2,3,...}

PM =m] = { 0, otherwise

8-1
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Therefore,

a? al
P[M<2]:P[MZO]‘I‘P[M:H:Q_QW—F@_O‘F

=e “(14+a)= e 0 (1+10) = 1le 9~ 5 x 1074

Problem 3. [M2011/1] The cdf of a random variable X is plotted in Figure [3.1]

A
1000k = = = = = = = —O——
0.784 | — — — - @)
0.352 | = — @O

>

1

P
(@)

N ==
o

Figure 8.1: CDF of X for Problem

(a) Find the pmf px(z).

(b) Find the family to which X belongs. (Uniform, Bernoulli, Binomial, Geometric, Pois-
son, etc.)

Solution:

(a) For discrete random variable, P[X = x] is the jump size at x on the cdf plot. In this
problem, there are four jumps at 0, 1, 2, 3.

e P[X =0] = the jump size at 0 = 0.064 = 1035 = (4/10)* = (2/5)*.
o P[X = 1] = the jump size at 1 = 0.352 — 0.064 = 0.288.

e P[X = 2| = the jump size at 2 = 0.784 — 0.352 = 0.432.

e P[X = 3] = the jump size at 3 =1 —0.784 = 0.216 = (6/10)°.

8-2
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In conclusion,

0.064, z =0,
0.288, = =1,

px () =< 0432, =2,
0.216, = =3,
0, otherwise.

(b) Among all the pmf that we discussed in class, only binomial pmf can have support
= {0, 1, 2,3} with unequal probabilities. To check that the RV really is binomial, recall
that the pmf for binomial X is given by px(z) = (Z)p“(l —p)" ) for x = 0,1,2,...,n.
Here, n = 3. Furthermore, observe that px(0) = (1 — p)". By comparing px(0) with
what we had in part (a), we have 1 —p = 2/5 or p = 3/5. For z = 1,2, 3, plugging in
p=3/5and n =3 in to px(z) = (?)p"(1 — p)™™™ gives the same values as what we

had in part (a). So, | X ~ B <3, g) )

Problem 4. When n is large, binomial distribution Binomial(n,p) becomes difficult to
compute directly . In this question, we will consider an approximation when the value of p
is close to 0. In such case, the binomial can be approximatedﬂ by the Poisson distribution
with parameter o = np. For this approximation to work, we will see in this exercise that n
does not have to be very large and p does not need to be very small.

(a) Let X ~ Binomial(12,1/36). (For example, roll two dice 12 times and let X be the
number of times a double 6 appears.) Evaluate px(z) for z =0, 1, 2.

(b) Compare your answers part (a) with its Poisson approximation.

Solution:

(a) For Binomial(n,p) random variable,

(A =p) T, 2 e{0,1,2,...,n},
px(e) = { 0, otherwise.

Here, we are given that n = 12 and p = Z. Plugging in z = 0,1,2, we get

36
0.7132,0.2445,0.0384 ], respectively

'More specifically, suppose X,, has a binomial distribution with parameters n and p,. If p, — 0 and
np, — a as n — oo, then

8-3
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(b) A Poisson random variable with parameter o = np can approximate a Binomial(n, p)

random variable when n is large and p is small. Here, with n = 12 and p = %, we
-1/3(1/3)"
z!

have o = 12 x 4= = £. The Poisson pmf at « = 0, 1,2 is given by e ™% = ¢

Plugging in x = 0, 1, 2 gives ’0.7165, 0.2388,0.0398 |, respectively.

Figure 7?7 compares the two pmfs. Note how close they are!

0.8 T T T T T T T
—© Binomial pmf
0 —* Poisson pmf |
0.6 b
0.5f b
0.4F B
0.3 b
0.2 b
0'1 - . . N N N N —
0 ? 2
0 1 2 3 5 6 7 8

e o o o o
4

X

Figure 8.2: Poisson Approximation

Problem 5. You go to a party with 500 guests. What is the probability that exactly one
other guest has the same birthday as you? Calculate this exactly and also approximately by
using the Poisson pmf. (For simplicity, exclude birthdays on February 29.) [Bertsekas and
Tsitsiklis, 2008, Q2.2.2]

Solution: Let N be the number of guests that has the same birthday as you. We may
think of the comparison of your birthday with each of the guests as a Bernoulli trial. Here,
there are 500 guests and therefore we are considering n = 500 trials. For each trial, the
(success) probability that you have the same birthday as the corresponding guest is p =
Then, this N ~ Binomial(n, p).

1
365°
(a) Binomial: P[N = 1] = np'(1 —p)" " ~[0.348].

(b) Poisson: P[N =1] =e ™ (”f!)l ~|0.348 |.

8-4
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Extra Questions
Here are some optional questions for those who want more practice.

Problem 6. A sample of a radioactive material emits particles at a rate of 0.7 per sec-
ond. Assuming that these are emitted in accordance with a Poisson distribution, find the
probability that in one second

(a) exactly one is emitted,
(b) more than three are emitted,
(¢) between one and four (inclusive) are emitted

[Applebaum, 2008, Q5.27].
Solution: Let X be the number or particles emitted during the one second under
consideration. Then X ~ P(a) where a = \T'= 0.7 x 1 = 0.7.

1

(a) P[IX =1]=e% =ae @ =0.7e %7 = 0.3477|.

3
(b) P[X >3|=1-P[X <3]=1-3 e *7%T ~[0.0058].
k=0

4
(c) Pl<X <4 = kz e 07T ~[0.5026]
=1

Problem 7 (M2011/1). You are given an unfair coin with probability of obtaining a heads
equal to 1/3,000,000,000. You toss this coin 6,000,000,000 times. Let A be the event that
you get “tails for all the tosses”. Let B be the event that you get “heads for all the tosses”.

(a) Approximate P(A).
(b) Approximate P(AU B).

Solution: Let N be the number of heads among the n tosses. Then, N ~ B(n,p). Here, we
have small p = 1/3 x 10° and large n = 6 x 10°. So, we can apply Poisson approximation.
In other words, B(n, p) is well-approximated by P(a) where o = np = 2.

(a) P(A)=P[N=0]=¢22 =1 ~[0.1353].

(b) Note that events A and B are disjoint. Therefore, P(AU B) = P(A) + P(B). We
have already calculated P(A) in the previous part. For P(B), from N ~ B(n,p), we

have P(B) = P[N =n] = p" = (53 )6X109. Observe that P(B) is extremely small

3x109

compared to P(A). Therefore, P(AUB) is approximately the same as P(A) ~|0.1353|.
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Problem 1. Consider a random variable X whose pmf is

1/2, = =-1,
px (x) =4 1/4, ©=0,1,
0, otherwise.

Let Y = X2
(a) Find EX.
(b) Find E[X?].
c) Find Var X.
e) Find py(y).

f

Find EY.

)
)
(c)

(d) Find ox.
(e)
(f)
)

(g) Find E[Y?].

Solution:

(a) EX:%:pr(x):(—l)x%—l—(())x%l—i-(l)X}L:—%—i-i: —=

(d) UX:\/Va X = g

(e) First, we build a table to see which values y of Y are possible from the values z of X:
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z | px(x) y

1] 12 | (—)2=1
0] 1/4 | (0)2=0
1] 1/4 | (12=1

Therefore, the random variable Y can takes two values: 0 and 1. py(0) = px(0) = 1/4.
py(1) = px(—1) + px(1) =1/2+4 1/4 = 3/4. Therefore,

1/4, y=0,
Py (y)z 3/4a y:17
0, otherwise.

3
() EY = Yuypy(y) = (0) x 1+ (1) x 3 = . Alternatively, because Y = X?, we
y
automatically have E [Y] = E[X?]. Therefore, we can simply use the answer from part

(b).

() B0 = S0 ()= (0 % 3+ (0 x 3= || Averatively
E[Y?] =E[X'] =) a'px (z) = (-1)" x

Problem 2. For each of the following random variables, find EX and oy.
(a) X ~ Binomial(3,1/3)
(b) X ~ Poisson(3)

Solution:

(a) From the lecture notes, we know that when X ~ Binomial(n,p), we have EX = np
and Var X = np(1 — p). Here, n = 3 and p = 1/3. Therefore, EX = 3 X % = . Also,
2

because Var X = 3 (%) (1 — %) = %, we have ox = vVar X = 3

(b) From the lecture notes, we know that when X ~ Poisson(«), we have EX = « and
Var X = a. Here, @ = 3. Therefore, EX = . Also, because Var X = 3, we have

ox = \/g

Problem 3. Suppose X is a uniform discrete random variable on {—3,—2,—1,0,1,2,3,4}.
Find
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Solution: All of the calculations in this question are simply plugging in numbers into
appropriate formulas.

(a) EX =[0.5]
(b) E[X?] =
(c) Var X =
(d) ox =

Alternatively, we can find a formula for the general case of uniform random variable X
on the sets of integers from a to b. Note that there are n = b — a + 1 values that the random
variable can take. Hence, all of them has probability %

2 2

(b) First, note that

> k(k—1)

||
-

k‘

=

|

—_

)<(k+1);(k—2))

b
(k+1)k 1)—Zk(k:—1)(k—2)>

k=a

£
I

£
I
S

e
M@‘

—~

—~
(=
_|_
H

b(b—1)—a(a—1)(a—2))

ool»—t oal»—t

where the last equality comes from the fact that there are many terms in the first sum
that is repeated in the second sum and hence many cancellations.

Now,
D= (k(k=1)+k)=> k(k—1)+> k
— (4B B —ala—1)(a—2) + O

9-3
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Therefore,

Zk?%:3in((b+1)b(b—1)—a(a—1)<a—2))+a;b

k=a

1, 1 1 1 1,
=—-q°— = —ab+-=b+-=0b
3a 6a+3a +6 —1—3

(¢) Var X =E[X*] = (BX)* = 5 (b—a) (b—a+2) = f5(n — 1)(n +1) = *7*.

(d) ox = VVar X = /==L

Problem 4. (Expectation + pmf + Gambling + Effect of miscalculation of probability) In
the eighteenth century, a famous French mathematician Jean Le Rond d’Alembert, author
of several works on probability, analyzed the toss of two coins. He reasoned that because
this experiment has THREE outcomes, (the number of heads that turns up in those two
tosses can be 0, 1, or 2), the chances of each must be 1 in 3. In other words, if we let N be
the number of heads that shows up, Alembert would say that

pn(n)=1/3 for N =0,1,2. (9.1)

[Mlodinow, 2008, p 50-51]

We know that Alembert’s conclusion was wrong. His three outcomes are not equally
likely and hence classical probability formula can not be applied directly. The key is to
realize that there are FOUR outcomes which are equally likely. We should not consider 0, 1,
or 2 heads as the possible outcomes. There are in fact four equally likely outcomes: (heads,
heads), (heads, tails), (tails, heads), and (tails, tails). These are the 4 possibilities that make
up the sample space. The actual pmf for N is

1/4, n=0,2,
pn(n) = 1/2 n=1,
0 otherwise.

Suppose you travel back in time and meet Alembert. You could make the following bet
with Alembert to gain some easy money. The bet is that if the result of a toss of two coins
contains exactly one head, then he would pay you $150. Otherwise, you would pay him $100.

Let R be Alembert’s profit from this bet and Y be the your profit from this bet.

9-4
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(a)

(b)

(c)
(d)

Then, R = —150 if you win and R = 4100 otherwise. Use Alembert’s miscalculated
probabilities from ({9.1)) to determine the pmf of R (from Alembert’s belief).

Use Alembert’s miscalculated probabilities from (9.1)) (or the corresponding (miscalcu-
lated) pmf found in part (a)) to calculate ER, the expected profit for Alembert.

Remark: You should find that ER > 0 and hence Alembert will be quite happy to
accept your bet.

Use the actual probabilities, to determine the pmf of R.

Use the actual pmf, to determine ER.

Remark: You should find that ER < 0 and hence Alembert should not accept your
bet if he calculates the probabilities correctly.

Note that Y = +150 if you win and Y = —100 otherwise. Use the actual probabilities
to determine the pmf of Y.

Use the actual probabilities, to determine EY.

Remark: You should find that EY > 0. This is the amount of money that you expect
to gain each time that you play with Alembert. Of course, Alembert, who still believes
that his calculation is correct, will ask you to play this bet again and again believing
that he will make profit in the long run.

By miscalculating probabilities, one can make wrong decisions (and lose a lot of money)!
Solution:

()

(b)

P[R=—150] = P[N =1] and P[R = +100] = P[N #£1] = P[N =0] + P[N = 2.
So,

pn (1), r = —150,
pr(r) =< pn(0) +pn(2), 7= 4100,
0, otherwise.

Using Alembert’s miscalculated pmf,

1/3, = —150,
pr(r) =4 2/3, r=+100,
0, otherwise
) 1 9 20
From pg(r) in part (a), we have ER = ) pgr(r) = 3 x (—150)+ 3 x 100 = 3|~ 16.67

9-5
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(c) Again,
pn(1), r = —150,
pr(r) =< pn(0) 4+ pn(2), = +100,
0, otherwise

Using the actual pmf,

1
g r=—1%0, L =150
B ¥ _ B 5, T =— or + 100,
pr(r) =9 s+ 7 +1QO’ o { 0, otherwise.
0, otherwise

(d) From pg(r) in part (c), we have ER = )" pg(r) = & x (=150) + 5 x 100 =

(e) Observe that Y = —R. Hence, using the answer from part (c), we have

1
- 5, y=+150 or — 100,
pr(y) = { 0, otherwise.

(f) Observe that Y = —R. Hence, EY = —ER. Using the actual probabilities, ER = —25
from part (d). Hence, EY =|+25].

Extra Questions
Here are some optional questions for those who want more practice.

Problem 5. A random variables X has support containing only two numbers. Its expected
value is EX = 5. Its variance is Var X = 3. Give an example of the pmf of such a random
variable.

Solution: We first find oy = v/Var X = v/3. Recall that this is the average deviation
from the mean. Because X takes only two values, we can make them at exactly ++/3 from
the mean; that is

a:1:5—\/§ and m2:5+\/§.

In which case, we automatically have EX = 5 and Var X = 3. Hence, one example of such
pmf is

PX(»’L'):{ %’ v =5+ 3

0, otherwise

We can also try to find a general formula for z; and z,. If we let p = P [X = 23], then
g=1—p=P[X = xl] Given p, the values of SL’l and xo must satisfy two conditions:
EX = m and Var X = ¢?. (In our case, m =5 and ¢ = 3.) From EX = m, we must have

T1q + T2p = m; (9.2)
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that is

m p

1 — — — To—.

q q

From Var X = o2, we have E [X?] = Var X + EX? = ¢ + m? and hence we must have
riq + x3p = o +m?. (9.3)
Substituting z; from (??) into (?7?), we have
r3p — 2m9mp + (pm2 — q02) =0

whose solutions are

_ 2mp £ AmPp? —dp(pm? —go®) _ 2mpE20vpg g
2p 2p p

m:@_(migﬁ)ﬂzmw P
q P/ q q

Therefore, for any given p, there are two pmfs:

X2

Using (?7), we have

;

[

l—p, z=m—-o

—
iS]

px(w) = D, r=m+o ?
[ 0, otherwise,
or )
l—p, v=m+o,/75
px(x) = D, r=m-—o %
0, otherwise.

\

Problem 6. For each of the following families of random variable X, find the value(s) of z
which maximize px(z). (This can be interpreted as the “mode” of X.)

(a) P(a)
(b) Binomial(n, p)
(c) Go(B)
(d) Gi(8)
Remark [Y&G, p. 66]:

g
g

0
1
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e For statisticians, the mode is the most common number in the collection of observa-
tions. There are as many or more numbers with that value than any other value. If
there are two or more numbers with this property, the collection of observations is
called multimodal. In probability theory, a mode of random variable X is a number
Tmode Satisfying

Px (Tmode) = px(x) for all z.

e For statisticians, the median is a number in the middle of the set of numbers, in the
sense that an equal number of members of the set are below the median and above the
median. In probability theory, a median, Xcgian, of random variable X is a number
that satisfies

P [X < Xmedian} =P [X > Xmedian] .

e Neither the mode nor the median of a random variable X need be unique. A random
variable can have several modes or medians.

Solution: We first note that when o« > 0, p € (0,1), n € N, and 5 € (0,1), the above
pmf’s will be strictly positive for some values of z. Hence, we can discard those x at which
px(z) = 0. The remaining points are all integers. To compare them, we will evaluate 7’?}({;;;)1).
(a) For Poisson pmf, we have

efaaH»l

px (1 +1) G«

(@) e i

4!

Notice that

. p;)(:(t.)l) > 1 if and only if i < a — 1.
° jI%.;;)l)zlifemdonlyifz':a—l.
° %<1ifandonlyifi>a—1.

Let 7 = o — 1. This implies that 7 is the place where things change. Moving from i
to ¢ + 1, the probability strictly increases if © < 7. When ¢ > 7, the next probability
value (at ¢ + 1) will decrease.

(i) Suppose a € (0,1), then &« —1 < 0 and hence ¢ > a — 1 for all i. (Note that ¢
are are nonnegative integers.) This implies that the pmf is a strictly decreasing
function and hence the maximum occurs at the first ¢ which is ¢ = 0.

(ii) Suppose o € N. Then, the pmf will be strictly increasing until we reaches i = a—1.
At which point, the next probability value is the same. Then, as we further
increase 7, the pmf is strictly decreasing. Therefore, the maximum occurs at o — 1
and a.

9-8



ECS 315 HW Solution 9 — Due: November 7, 4 PM 2019/1

(iii) Suppose a ¢ N and a > 1. Then we will have have any ¢ = o — 1. The
pmf will be strictly increasing where the last increase is from i = |a — 1] to
i+1=]a—1|+1=|«al. After this, the pmf is strictly decreasing. Hence, the
maximum occurs at |«a].

To summarize,

0, a € (0,1),
argmax py (z) = a—1and o, « is an integer,
’ la], a > 1 is not an integer.
(b) For binomial pmf, we have
. n! i+1 n—i-1 .
px (i+1) _ @ A=) (a—d)p
px (1) Tl (1= )" (i+1)(1-p)

Notice that

° %> lifandonlyif i<np—1+p=(mn+1)p—1.
. p;g}((i(j;) —=1ifand only if i = (n+ 1)p — 1.
° p—;f)(:;;)l) < lifand onlyif ¢ > (n+1)p — 1.

Let 7 = (n+1)p—1. This implies that 7 is the place where things change. Moving from
1 to 7 + 1, the probability strictly increases if i < 7. When ¢ > 7, the next probability
value (at ¢ + 1) will decrease.

(i) Suppose (n+1)p is an integer. The pmf will strictly increase as a function of 7, and
then stays at the same value at it =7 = (n+1)p—landi+1=(n+1)p—1+1=
(n+ 1)p. Then, it will strictly decrease. So, the maximum occurs at (n+1)p —1
and (n + 1)p.

(ii) Suppose (n + 1)p is not an integer. Then, there will not be any ¢ that is = 7.
Therefore, we only have the pmf strictly increases where the last increase occurs
when we goes from ¢ = |7] to i +1 = |7] + 1. After this, the probability

is strictly decreasing. Hence, the maximum is unique and occur at |[7| + 1 =
l(n+1)p—1]+1=|(n+1)p].

To summarize,

{ (n+1)p—1and (n+1)p, (n+ 1)pis an integer,

argmax px (z) = [(n+1)p). (n+ 1)p is not an integer.

T
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(c) % = [ < 1. Hence, px(i) is strictly decreasing. The maximum occurs at the

smallest value of 7 which is @

(d) 2 ;)(:(J;)l) = [ < 1. Hence, px(i) is strictly decreasing. The maximum occurs at the

smallest value of 4 which is .

Problem 7. An article in Information Security Technical Report [“Malicious Software—
Past, Present and Future” (2004, Vol. 9, pp. 618)] provided the data (shown in Figure
on the top ten malicious software instances for 2002. The clear leader in the number of
registered incidences for the year 2002 was the Internet worm “Klez”. This virus was first
detected on 26 October 2001, and it has held the top spot among malicious software for the
longest period in the history of virology.

Place Name % Instances
1 I-Worm.Klez 61.22%
2 I-Worm.Lentin 20.52%
3 I-Worm. Tanatos 2.09%
4 I-Worm.Badtransl| 1.31%
5 Macro.Word97.Thus 1.19%
6 I-Worm.Hybris 0.60%
7 I-Worm.Bridex 0.32%
8 I-Worm.Magistr 0.30%
9 Win95.CIH 0.27%

10 I-Worm.Sircam 0.24%

Figure 9.1: The 10 most widespread malicious programs for 2002 (Source—Kaspersky Labs).

Suppose that 20 malicious software instances are reported. Assume that the malicious
sources can be assumed to be independent.

(a) What is the probability that at least one instance is “Klez”?
(b) What is the probability that three or more instances are “Klez”?

(c) What are the expected value and standard deviation of the number of “Klez” instances
among the 20 reported?

Solution: Let N be the number of instances (among the 20) that are “Klez”. Then,
N ~binomial(n, p) where n = 20 and p = 0.6122.
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(a) P[N>1]=1-P[N <1]=1-P[N =0] = 1—py(0) = 1—(})) x0.6122°x0.3878% ~
0.9999999941 = 1.

b
" PIN>3=1-P[N<3 =1—(P[N=0]+P[N=1+P[N=2)

2

20 _

=Y <k ) (0.6122)"(0.3878)* % ~ 0.999997
k=0

(¢) EN =np =20 x 0.6122 = 12.244.
on =V Var N = y/np(1 — p) = v/20 x 0.6122 x 0.3878 = 2.179.
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ECS 315: Probability and Random Processes 2019/1
HW 10 — Due: November 14, 4 PM

Lecturer: Prapun Suksompong, Ph.D.

Instructions
(a) This assignment has 6 pages.

(b) (1 pt) Hard-copies are distributed in class. Original pdf file can be downloaded from the
course website. Work and write your answers directly on the provided hardcopy/file
(not on other blank sheet(s) of paper).

(c) (1 pt) Write your first name and the last three digits of your student ID in the spaces provided
on the upper-right corner of this page. Furthermore, for online submission, your file name
should start with your 10-digit student ID, followed by a space, the course code, a space, and
the assignment number: “5565242231 315 HW10.pdf”

(d) (8 pt) It is important that you try to solve all problems.

(e) Late submission will be heavily penalized.

Problem 1 (Yates and Goodman, 2005, Q3.2.1). The random variable X has probability

density function
cr 0<z <2,
Fx() = { 0, otherwise.

Use the pdf to find the following quantities.
(a) the constant ¢ Recall thet any Fdf should in 'h.tjrcd'c ‘o 1.

-o 2 This shoold =1,

z 2 Y
j]l,;Loc)Aac. =Jcac Aae = c S&Au =C£\ =;‘E chu{:orc) cC= i"
— 2 le
(o] (v)
(b) P[0 < X <1]
1
1
- = |4 =1 x* =4,
- 5;&(:)44 JzaCclac. z.%]o .
] [~
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172 17z 1'/2
(c) P[-1/2< X <1/2]. :S/(&)J&: J-’i« =& °=.1J;,
-1/2 (o]

Ao =0 on[-4,)

(d) the cdf Fx(x).
For e <o, because fl.t’) o for %o, Fete) = L/Lt)ét = 0

” x - . o, e <o,
t > =4a" <2
£ ond F (=) J o dt S—Jt = L) - 2 F (<) '{""" 0&x<2,
For O‘*—S’-, /X"b =2 x “ 7€‘L ? - 2 4 lp “ * 1, otherwise.
con °
At =2 F,l3) =1.
o 2 «<
For x>2 ,f‘u-, =0, Thevafore, Fle) = j ;&u-)elt = S;ﬁ(f))t# j/,;w»c\t =9,
-on bl d 2 ©
— W
Fy (2) =1
Problem 2 (Modified from Yates and Goodman 2005, Q3.1. 3) The CDF of a random
variable KV _15 o Remark: It is possible to solve this
arye 0, w < =5, problem by finding the pdf first.
X £l (w+5)/8, —5 < w < =3, (You are asked to derive the pdf
Llwrs) m.,./'“ S Fw(w) — 1/47 —3<w<3, anyway in the e::xt Ir:jrollolem.) .
/( . B owever, you should also make
l‘/ ; : 1/4 +3 (w 3) /8’ 3w <5, sure that you know how to calculate

——t——t ——i + > w
5 ew -3 -2 o 1 23 45 1, w > D. the probabilities directly from the
cdf.
(a) Is W a continuous random variable?

From tne P\"" abov'-/ Wwe see that ngnr) 9 a continuous Funci':on.

Be cavse it cdfb s continuovs, we conclude trar W is a continvous RV.

(b) What is P [W < 4]?
2 - i l:iﬁ .
r[wsq];FwLﬁt)gi-f'[“‘ })=fhrg =g %0625

\y definition of cdf
(c) What is P[-2 < W < 2]?

[-z(w 49_] F 2 -F, l-2) =2 --1‘;:-0

For conYinvous RV, F[“- éX Sl’] b Fx ‘-l’)"Fx"”
(d) What is P[IW > 0]?
Pw>e] =1-Plwso] =1-For=1-L=2
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(e) What is the value of a such that P [W < a] =1/27
P[N $0'--J = FWU’). From +he p\o'l' a.\-,ove) we knrow Yhat

Yo have FN(_a) -%— ) the value O‘F a must be in the interval (2.9

In this h\'e"va\J Fw () = JH‘" %(a"s ) - 1 "
So, we solve fovr a* Yhat satisfies L+ 2 (a-3) = 5 =2 o= —3-9"'5"?'

Problem 3 (Yates and Goodman, 2005, Q3.2.3). The aDF gf random variable W is

0, w < —H,

(w+5)/8, -5 <w< -3,
Fw(w) =< 1/4, -3 <w<3,

1/44+3(w—3)/8, 3<w<5,

1, w > 5.

Find its pdf fy (w).
Giver o CA;‘; we can Find the réf ‘7; -\-ak.'na devivative.

As c\iscusse«é in class, -For the \oca.'l'wv(s) wheve c\cv:va.ﬂvc does ot
exsY, we con choose *teo Ae-‘::f\e Yhe PJ/‘ +o Le afy convanient
va\w..

I~ tHeis CUV"H"“' The Cc!/ is aquvenn ia thwe -Fo/m of expressions
on several intervals. It is thel eary +o £:nd W devivative
intide ecach of the iatervals:

ol W"s,

1/5, <S5 wr -3
Ay = & F lw)= ’
w an o, =34ws <3,

3/8& 34w {5,

o, S {w.

Iy should bLe cleaw erom the P\o‘\' of cdf ia the "-WI‘-V;O“" |°'°u¢"' et The
agﬁvq'ﬂve acc.s noY exist a¥ wr=-s -3 ‘5J$. We choose +o assfan

/wL”) =0 ot these points.

1/8, -5 4dw{-3
;{\.LW) = Q3¢ 3<veds
o, Otherwise
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Problem 4 (Yates and Goodman, 2005, Q3.3.4). The pdf of random variable Y is

_Jy/2 0<y<2,
Frly) = { 0, otherwise.

(a) Find E[Y].
(b) Find VarY.
Solution:

(a) Recall that, for continuous random variable Y,

EY = / yfv (9)dy.

Note that when y is outside of the interval [0,2), fy(y) = 0 and hence does not affect
the integration. We only need to integrate over [0,2) in which fy(y) = ¥. Therefore,

2

= oG- [ Lar-
0

0

4

2
o 3]

%
2x3
(b) The variance of any random variable Y (discrete or continuous) can be found from

VarY = E[Y?] - (EY)?

We have already calculate EY in the previous part. So, now we need to calculate
E [Y?]. Recall that, for continuous random variable,

Elg(Y)] = _7; 9(y) fr (y) dy.
Here, g(y) = y*. Therefore,
E[YY] = [ v'f ()dy

Again, in the integration, we can ignore the y whose fy(y) = 0:

2

0] [ Qo= [ -

0

2
_[2]
0

!
2 x4
Plugging this into the variance formula gives

varY:E[Yﬂ—(EY)2=2—<—)2=2——= g

10-4



ECS 315 HW Solution 10 — Due: November 14, 4 PM 2019/1

Problem 5 (Yates and Goodman, 2005, Q3.3.6). The cdf of random variable V' is

0 v < —b,
Fy(v)=4¢ (v+5)?/144, -5<0v<T,
1 v>T.

(a) What is fy(v)?
(b

)

) What is E [V]?
(c) What is Var[V]?

)

(d) What is E[V3]?

Solution: First, let’s check whether V' is a continuous random variable. This can be done
easily by checking whether its cdf Fy/(v) is a continuous function. The cdf of V' is defined
using three expressions. Note that each expression is a continuous function. So, we only need
to check whether there is/are any jump(s) at the boundaries: v = 5 and v = 7. Plugging
v = 5 into (v + 5)?/144 gives 0 which matches the value of the expression for v < —5.
Plugging v = 7 into (v+5)?/144 gives 1 which matches the value of the expression for v > 7.
So, there is no discontinuity in Fy (v). It is a continuous function and hence V itself is a
continuous random variable.

(a) We can find the pdf fy(v) at almost all of the v by finding the derivative of the cdf

Fy(v):
d 0, v < —9,
fv (U):%FV (v) =3¢ %2, —5<w<T,
0, v>T.

Note that we still haven’t specified fy(v) at v = 5 and v = 7. This is because the
formula for Fy (v) changes at those points and hence to actually find the derivatives,
we would need to look at both the left and right derivatives at these points. The
derivative may not even exist there. The good news is that we don’t have to actually
find them because v = 5 and v = 7 correspond to just two points on the pdf. Because
V' is a continuous random variable, we can “define” or “set ” fy(v) to be any values
there. In this case, for brevity of the expression, let’s set the pdf to be 0 there. This

gives
d w5 5<u<T
_ — — 72 ?
fv (@) dUFV () { 0,  otherwise.
0 7 . 7
(b) EV]= [ vfy (v)dv= [v(%2)dv =2 [v?+ 5vdv=]3].
o i 4
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(c) E[V? = _z V2 fy (v) dv = f7 v? (L2)dv = 17.

72
-5

Therefore, VarV = E[V?] — (E[V])? = 17— 9 =[8].

oo 7 431
(d) EV3] = [ ¥*fy (v)dv= [ v*(E2)dv = - = 86.2|.
e e
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Problem 1 (Yates and Goodman, 2005, Q3.4.5). X is a continuous uniform RV on the
interval (—5,5).
(a) What is its pdf fx(z)?
(b) What is its cdf Fx(z)?
(c) What is E [X]?

[
(d) What is E [X°]?
(e) What is E [¢X]?

Solution: For a uniform random variable X on the interval (a,b), we know that

0, r<aorzxz>b,
fX(x):{

1

—a’ agxgb
and
0, T < a,
Fx (x) =, a<z<bh
1

) x> b.
In this problem, we have a = —5 and b = 5.

(a) fx (z) = {O, r<—95orx>»>H,

1

0, T < —9,
(b) Fx (z) =|q %2, a<az<b.
1, T >9H

00 5
(c) EX:_f a:fx(x)da::_f5x>< =

T 2
10 2| o~ 210 (52_(_5) ) :@-
In general,
Fo 1 122" 1 B —ad® a+b
/&b—ax b—a/xx b—a 2| b—a 2 2

With a = —5 and b = 5, we have EX =[0].
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0o 5 5
(1) B = [ x5fx(a:)dx:;£as5><%da::%0%6_5:%(56—(—5)6):@
In general,
Fo 1 1 28] 1 5 —df
E[X°] = [ 2° de = /5d = —| =
[ } /xb—ax b—a v b—a 6|, b—a 2

With a = —5 and b = 5, we have E[X°] =[0].

(e) In general,

1 1 1 et — e
E[e¥] = dv = " = "o =
[e¥] /eb—ax b—a/e T _ae]a —
JER
With a = —5 and b = 5, we have E [eX] = i ~ 14.84.

Problem 2 (Randomly Phased Sinusoid). Suppose O is a uniform random variable on the
interval (0, 27).

(a) Consider another random variable X defined by
X = 5cos(7t + O)
where ¢ is some constant. Find E [X].

(b) Consider another random variable Y defined by
Y = 5cos(Tty + ©) x 5cos(Tty + O)
where t; and 5 are some constants. Find E[Y].

Solution: First, because © is a uniform random variable on the interval (0,27), we
know that fo(0) = 5=1(02m (t). Therefore, for “any” function g, we have

Ely(©) - [ " 9(0) fol0)d0.

[e.9]

(a) X is a function of ©. E [X] = 5E [cos(Tt + ©)] =5 f027r 5= cos(Tt + 0)df. Now, we know

2m
that integration over a cycle of a sinusoid gives 0. So, E[X] = @
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(b) Y is another function of ©.

2m 1
E[Y] =E[5cos(7t; + O) x 5cos(Tty + ©)] = /0 2—5 cos(7t; 4+ 0) x 5cos(Tty + 0)do

m
2

cos(Tty + 0) x cos(Tty + 6)d6.

Recal]lﬂ the cosine identity

cos(a) x cos(b) = % (cos(a+b)+cos(a—10)).

Therefore,
25 2w
EY = yp cos (Tty + Tta 4 20) + cos (7 (t1 — t2)) db
T
25 ’ 2m 2m
= — (/ cos (Tt + Tty + 260) do +/ cos (7 (t; — t2)) d9> :
4 \ Jo 0

The first integral gives 0 because it is an integration over two period of a sinusoid. The
integrand in the second integral is a constant. So,

25 o 25 25
EY = — cos (7 (t1 — t2)) df = —cos (7(t1 —ta)) 2w =| —cos (7 (t1 — t2)) |
4dm 0 4m 2
IThis identity could be derived easily via the Euler’s identity:
ja 4 g—ja  eib 4 e=ib 1 o o o
cos(a) x cos(b) = c +2€ x & +26 =1 (e7%e1? 4 e77%eIb 4 eI%e™Ib 4 emT0e7IP)
1 [elaelb 4 eiaeg=ib  g=daeib 4 elag=ib
T2 < 2 2 )

:%(cos(a-l—b)-i'cos(a_b))'
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Lecturer: Prapun Suksompong, Ph.D.

Problem 1. A random variable X is a Gaussian random variable if its pdf is given by

(@) = <= T

2o

for some constant m and positive number o. Furthermore, when a Gaussian random variable
has m = 0 and o = 1, we say that it is a standard Gaussian random variable. There is no
closed-form expression for the cdf of the standard Gaussian random variable. The cdf itself
is denoted by ® and its values (or its complementary values Q(-) = 1 —®(-)) are traditionally
provided by a table.

Suppose Z is a standard Gaussian random variable.

(a) Use the ® table to find the following probabilities:

(i) P|Z <152
(i) P[Z < —1.52]
(iii) P[Z > 1.52]
) P[Z > —152]
) P[-1.36 < Z < 1.52]

(iv
(v

(b) Use the ® table to find the value of ¢ that satisfies each of the following relation.
(i) P[Z > =0.14
(i) P[-c< Z <] =0.95

Solution:

(a)

) P[Z <1.52] = ®(1.52) =

) P[Z < —1.52] = ®(—1.52) =1 — ®(1.52) = 1 — 0.9357 =

) P[Z>152]=1—P[Z<152]=1—®(1.52) =1—0.9357 =

) Iti

(iv) It isstraightforward to see that the area of P [Z > —1.52] is the same as P [Z < 1.52] =
®(1.52). So, P[Z > —1.52] =
Alternatively, P[Z > —1.52] = 1 — P[Z < —1.52] = 1 — &(—1.52) = 1 — (1 —
B(1.52)) = B(1.52).

(i
(ii

(iii
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(v) P[-1.36 < Z < 1.52] = ®(1.52)—®(—1.36) = (1.52)— (1—D(1.36)) = ®(1.52)+

®(1.36) — 1 = 0.9357 + 0.9131 — 1 =[0.8488.
(b)

(i) P[Z>c=1—-P[Z<c]=1-®(c). So, we need 1 — ®(c) = 0.14 or ¢(c) =
1 —0.14 = 0.86. In the ® table, we do not have exactly 0.86, but we have 0.8599
and 0.8621. Because 0.86 is closer to 0.8599, we answer the value of ¢ whose

¢(c) = 0.8599. Therefore, ¢ ~
(i) Pl[~c< Z <] = P(c) — P(—c) = P(c) — (1 — P(c)) = 2P(c) — 1. So, we need
20(c) — 1 =0.95 or ®(c) = 0.975. From the ¢ table, we have ¢ ~

Problem 2. The peak temperature 7', as measured in degrees Fahrenheit, on a July day in
New Jersey is a A/ (85,100) random variable.

Remark: Do not forget that, for our class, the second parameter in NV(-,-) is the variance
(not the standard deviation).

(a) Express the cdf of T in terms of the ® function.

(b) Express each of the following probabilities in terms of the ® function(s). Make sure
that the arguments of the ® functions are positive. (Positivity is required so that we
can directly use the ®/Q tables to evaluate the probabilities.)

(i) P[T > 100]
(ii) P[T < 60]
(iii) P[70 < T < 100

(c) Express each of the probabilities in part (b) in terms of the @ function(s). Again, make
sure that the arguments of the () functions are positive.

(d) Evaluate each of the probabilities in part (b) using the ®/@Q tables.

(e) Observe that the ® table (“Table 4”7 from the lecture) stops at z = 2.99 and the @
table (“Table 57 from the lecture) starts at z = 3.00. Why is it better to give a table
for Q(z) instead of ®(z) when z is large?

Solution:

(a) Recall that when X ~ N (m,0?), Fx(z) = ® (:2) . Here, T' ~ N (85,10?). Therefore,

<[ (52). "
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(b)

(i) P[T>100] =1— P[T <100] =1 — Fr(100) =1 — & (1%9=52) = 1 — &(1.5)
(ii) P[T < 60] = P[T < 60] because T is a continuous random variable and hence
P[T = 60] = 0. Now, P[T < 60] = Fp(60) = & (%) = &(-2.5) =

1 —®(2.5).| Note that, for the last equality, we use the fact that ®(—z) =
1 —®(2).

(iii)

100 — 85 70 — 85
P[70 < T < 100] = Fr(100) — Fp(70) = ® (1—0) ) ( 5 )

= (1.5)— D (—1.5) =P (1.5) — (1 — ®(1.5)) = |2 (1.5) — 1.

(c) In this question, we use the fact that Q(z) =1 — ®(x).
(i) 1—®(L5) =[Q(L5).

(ii) 1 —@(2.5) =|Q(2.5).

(iii) 20 (1.5) = 1=2(1 = Q(1.5)) = 1 =2 = 2Q(1.5) — 1 = |1 — 2Q(1.5).|

(d)
(i) 1—®(1.5) =1—0.9332 =
(i) 1 —®(2.5) =1 —0.99379 =
(iif) 2® (1.5) — 1 =2(0.9332) — 1 =

(e) When z is large, ®(z) will start with 0.999... The first few significant digits will all be
the same and hence not quite useful to be there.

Problem 3. Suppose that the time to failure (in hours) of fans in a personal computer can
be modeled by an exponential distribution with A = 0.0003.

(a) What proportion of the fans will last at least 10,000 hours?
(b) What proportion of the fans will last at most 7000 hours?

[Montgomery and Runger, 2010, Q4-97]
Solution: Let T be the time to failure (in hours). We are given that 7" ~ £(\) where
A = 3 x 1074, Therefore,
e ™Mt >0,
Jr(t) = { 0, otherwise.
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(a) Here, we want to find P [T > 10%].
We shall first provide the general formula for the ccdf P [T > t] when ¢ > 0:

o0

P|T >t = /fT (1)dr = /)\e_’\TdT = —e_’\T}:o = (12.1)

t

Therefore,

P[T > 10" = #1010 — o3 » 0,0498.

(b) We start with P [T" < 7000] = 1 — P [T > 7000]. Next, we apply (12.1)) to get

P[T <7000) = 1 — P[T > 7000] = 1 — ¢=3*107"x7000 [ _ =21 ~ 8775 |

Problem 4. Let a continuous random variable X denote the current measured in a thin
copper wire in milliamperes. Assume that the probability density function of X is

o= P A9sa<hl
XY 70, otherwise.

a) Find the probability that a current measurement is less than 5 milliamperes.

(
(b

Find and plot the cumulative distribution function of the random variable X.

d

)
)

(¢) Find the expected value of X.

(d) Find the variance and the standard deviation of X.
)

(e) Find the expected value of power when the resistance is 100 ohms?

Solution:

(a) P[X <5] = ffX dx—ffx d33+ffx x)dz =0+ 5a[;_, 5 =[05].
0 5

(b) By definition, Fx(z) = P[X <a] = | fx(t)dt.

—00

e For v < 4.9, fx(t) =0 for all ¢ inside (—00,4.9). Therefore,

e For 4.9 <x <5.1,
= t)d )dt + )dt =0+ 5t = bx — 24.5.
_{o fx () f fX ffX a9
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e For x > 5.1,
T 4.9 5.1 T 51
Fy(z)= [ fx@)dt= [ fx@®)dt+ [ fx (@)dt+ [ fx (t)dt =0+5¢t],_,4+0=1.
—oc0 —co N 49N 5.1 =~

Combining the three cases above, we have the complete description of the cdf:

0, T < 4.9,
Fx(z)=<¢ bz —24.5, 49<xz <51,
1, x> 5.1

The corresponding plot is shown in Figure Note that Fx(x) is a continuous
function; this is expected because X is a continuous RV.

[ Fx (x)

35
Figure 12.1: Plot of cdf for Problem [4]

4.9

(c) EX = T efx (x)de = [ z fx (x)dz+ Tfo (x)dx + f v fx (z)dr =0+ 5%2 " +
“ ~—— 49 S~~~ 5.1 T

r=4.9
0=|5|mA.

Alternatively, for X ~ U(a,b), we have EX = ¢tb = 494851 — 5,

—0o0

(d) Var X = E[X?] — (EX)?. From the previous part, we know that EX = 5. SO,

00 4.9
to find Var X, we need to find E [X?|: E[X?| = [ 2%fx(z)de = [ 2* fx (v)dz +
—00 —0o0 —
0
[ a2 gy o J a2 gy @ar =0+ 52" 0=+ 3
x r)ax + | T x)dr = 0+ 5% +0=25+ —=.
4.9 &5/—’ 5.1 &0’_/ 3 o=t 500
1

Therefore, Var X = E [X?] — (EX)? = (25 + 555) =

300

—|~0. A)?
25|~ 0.0033 (mA)

and
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1
ox =V Var X =| —— |~ 0.0577 mA.
X 10V3
Alternatively, for X ~ U(a,b), we have Var X = (bzg)Q = (5'113‘9)2 = .

(e) Recall that P = I x V = I*r. Here, I = X. Therefore, P = X?r and EP = E[X?r] =

rE [X?] = 100 x (25 + 555) = 2500 + 3 ~ 2.50033 x 10° [(mA)?*Q]. Factoring out m?,

we have EP ~ 2.50033 mW. ([A%Q] = [W].)

Problem 5. Let X be a uniform random variable on the interval [0, 1]. Set

1 1 1 3 1 1 3 15 37
4= {”’5)’ b= M . {M)’ and €= {O’é) . h’é) . E’é) . {M)'
Are the events [X € A],[X € BJ, and [X € C] independent?

Solution: Note that

1
2
1
P[XEA]:/d:pzé,
0
i

Now, for pairs of events, we have

dm:i:P[XeA]xP[XEB], (12.2)

\MH

P(X € AlN[X € B)) =

P([XEA]D[XGC]):/dw+/d:U:;L:P[XGA]xP[XEC], and (12.3)
P([XeB]ﬂ[XGO]):/dx+/dx:;L:P[XGB]xP[XeC]. (12.4)
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Finally,

P([XeA]ﬂ[XeB]m[XEC]):/dm:é:P[XeA]P[XGB]P[XEC]. (12.5)

From (12.2)), (12.3), (12.4) and (12.5), we can conclude that the events [X € A],[X € B,
and [X € (] are |independent |.

Problem 6. Cholesterol is a fatty substance that is an important part of the outer lining
(membrane) of cells in the body of animals. Its normal range for an adult is 120-240 mg/dl.
The Food and Nutrition Institute of the Philippines found that the total cholesterol level for
Filipino adults has a mean of 159.2 mg/dl and 84.1% of adults have a cholesterol level below
200 mg/dl. Suppose that the cholesterol level in the population is normally distributed.

(a) Determine the standard deviation of this distribution.
(b) What is the value of the cholesterol level that exceeds 90% of the population?

(c) An adult is at moderate risk if cholesterol level is more than one but less than two
standard deviations above the mean. What percentage of the population is at moderate
risk according to this criterion?

(d) An adult is thought to be at high risk if his cholesterol level is more than two standard
deviations above the mean. What percentage of the population is at high risk?

Solution: Let X be the cholesterol level of a randomly chosen adult. It is given that
X ~ N(m,0?) where m = 159.2 mg/dl. We also know that P [X < 200] = 0.841.

(a) For any Gaussian random variable, P [X < 200] = ® (222=) [ is given that this
probability should be 0.841. Our plan is then to first find the number z whose ®(z) =
0.841. Then, solve for ¢ from z = QOOT_”"”.

From the ® table, $(0.99) ~ 0.8389 and ®(1) ~ 0.8413. Because 0.841 is closer to
0.8413 than 0.8389, we conclude that the value of z that makes ®(z) = 0.841 is z ~ 1.

200—m
o

From z = plugging-in z &~ 1 gives o ~ 200 — m = 200 — 159.2 = |40.8 mg/dl.

(b) Here, we want to find the value of = such that P [X < z] = 0.9. (90% of the population
has cholesterol level lower than this z.)

r—m

For any Gaussian random variable, P[X < z] = ® (%
find the number z whose ®(z) = 0.9. Then, solve for z from z =

From the ® table, ®(1.28) ~ 0.8997 and ®(1.29) ~ 0.9015. Because 0.9 is closer to
0.8997 than 0.9015, we conclude that the value of z that makes ®(z) = 0.9 is z ~ 1.28.

). Our plan is then to first

r—m

r—m

™, plugging-in z ~ 1.28 gives z =~ 1.280 + m ~|211.424 mg/dl.

From z =
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(c) Here we want to find the probability that m + o < X < m + 20
Pm+o<X <m+20|=Fx(m+20)—Fx(m+o).

For any Gaussian random variable, Fx(z) = ® (%) Therefore,

P[m+a<X<m+2a]:q>(w>_@<W)

o o

— P (2) — @ (1) ~ 0.97725 — 0.8413 ~0.1359 = 13.59% |

(@) PIX >m+20] = 1= P[X <m+20] = 1 = Fx (m+20) = 1 - @ ({m22m) —
1—®(2) ~ 1—0.97725 ~|0.0228 = 2.28%|.

Problem 7 (QQ3.5.6). Solve this question using the ®/Q table.

A professor pays 25 cents for each blackboard error made in lecture to the student who
points out the error. In a career of n years filled with blackboard errors, the total amount
in dollars paid can be approximated by a Gaussian random variable Y,, with expected value
40n and variance 100n.

(a) What is the probability that Yy exceeds 10007
(b) How many years n must the professor teach in order that P [Y;, > 1000] > 0.997
Solution: We are giver[] that Y, ~ NV (40n,100n). Recall that when X ~ N (m,o?),

Fy(z) = ® (‘”_m>. (12.6)

g

(a) Here n = 20. So, we have Y, ~ N (40 x 20,100 x 20) = N (800, 2000). For this random
variable m = 800 and o = 1/2000.
We want to find P [Yao > 1000] which is the same as 1 — P [Y20 < 1000]. Expressing
this quantity using cdf, we have

P [Ya > 1000] = 1 — Fy,,(1000).
Apply (12.6) to get

1000 — 800

INote that the expected value and the variance in this question are proportional to n. This naturally
occurs when we consider the sum of i.i.d. random variables. The approximation by Gaussian random variable
is a result of the central limit theorem (CLT).

12-8



ECS 315 HW Solution 12 — Due: Not Due 2019/1

(b) Here, the value of n is what we want. So, we will need to keep the formula in the
general form. Again, from (12.6)), for Y;, ~ N (40n,100n), we have

PIY, > 1000] = 1 — Fy. (1000) = 1 — @ (12000 =400y ) g (100—4n}y
104/n NG

To find the value of n such that P [Y,, > 1000] > 0.99, we will first find the value of z
which make
1— @ (z) > 0.99. (12.7)

At this point, we may try to solve for the value of Z by noting that (12.7)) is the same
as
d (z) < 0.01. (12.8)

Unfortunately, the tables that we have start with ®(0) = 0.5 and increase to something
close to 1 when the argument of the ® function is large. This means we can’t directly
find 0.01 in the table. Of course, 0.99 is in there and therefore we will need to solve
(12.7) via another approach.

To do this, we use another property of the ® function. Recall that 1 — ®(z) = &(—2).
Therefore, (12.7) is the same as

® (—2) > 0.99. (12.9)

From our table, we can then conclude that (which is the same as ) will
happen when —z > 2.33. (If you have MATLAB, then you can get a more accurate
answer of 2.3263.)

100—4n 4n—100

Now, plugging in z = = we have v 2.33. To solve for n, we first let x = /n.

In which case, we have 4’”2% > 2.33 or, equivalently, 422 — 2.33z — 100 > 0. The two
roots are x = —4.717 and x > 5.3. So, We need x < —4.717 or x > 5.3. Note that
x = /n and therefore can not be negative. So, we only have one case; that is, we need
x > 5.3. Because n = x?, we then conclude that we need ’n > 28.1 years ‘

Problem 8. The time until a chemical reaction is complete (in milliseconds) is approximated
by the cumulative distribution function

{ 1 — 6—0.0117 x>0,

Fx (z) = 0, otherwise.

(a) Determine the probability density function of X.

(b) What proportion of reactions is complete within 200 milliseconds?
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Solution: Note that the cdf Fx(z) is a continuous function. Therefore, X is a continuous
RV.

0.01e790 2 > (),
(a) fx@):%FX("E):{Q, x < 0.

At z = 0, the derivative does not exist. However, X is a continuous RV. Therefore, we
can assign fx(0) to be any arbitrary value. Here, we set fx(0) = 0:

fx (2) = 0.01e %0z 2 >0,
XA = 0, otherwise.

(b) P[X < 200] = P[X < 200] = Fy (200) = 1 — ¢ 001x200 — |1 _ ¢=2 () 8647.
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Lecturer: Prapun Suksompong, Ph.D.

Problem 1. The input X and output Y of a system subject to random perturbations are
described probabilistically by the following joint pmf matrix:

2 4 5
Y
1 0.02 0.10 0.08
3 0.08 0.32 0.40

(a) Evaluate the following quantities:

(i
(ii

The marginal pmf px (x)
The marginal pmf py (y)
EX

Var X

(iii

(iv

(X =3)(Y = 2)]
[X(Y? - 11Y2 4 38Y)]
Cov [X,Y]
(Xlll) PXY

(b) Flnd vaX

(xi

)
)
)
)
)
)
0
)
)
)
)
)

(xii

(c) Calculate the following quantities using the values of Var X, Cov [X,Y], and px y that
you got earlier.

(i) Cov[3X +4,6Y — 7]
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(ii) P3X+4,6Y -7

(iii) Cov [X, 6X — 7]

(iV) Px6xX—1
Solution:

(a) The MATLAB codes are provided in the file P_XY EVarCov.m.

(i) The marginal pmf px(x) is founded by the sums along the rows of the pmf matrix:

02, =1
px () =4 0.8, z=3
0, otherwise.

(ii) The marginal pmf py(y) is founded by the sums along the columns of the pmf

matrix:
0.1, y=2
B 042, y=4
Py W) =19 0, y=5
0, otherwise.

(iii) EX =Y apx () =1x02+3x08=02+24=[26]
(iv) E[X? =Y a’px () =12 x 02+ 32 x08=02+72="74.
So, VarX = E (X% — (EX)? =74 —(2.6)>="7.4—6.76 = [0.64]
(V) EY =S ypy (y) =2 x 0.1 +4 x 042+ 5 x 0.48 = 0.2 4 1.68 + 2.4 = [4.28],
(vi) E[Y?] i S uPpy (y) = 22 x 0.1 442 x 0.42 + 52 x 0.48 = 19.12.
Y

So, VarY = E[Y?] — (EY)? = 19.12 — 4.282 = [0.8016].

(vii) Among the 6 possible pairs of (z,y) shown in the joint pmf matrix, only the pairs
(1,2), (1,4), (1,5) satisfy zy < 6. Therefore, [ XY < 6] = [X = 1] which implies
P[XY < 6] = P[X =1] =[0.2]

(viii) Among the 6 possible pairs of (x,y) shown in the joint pmf matrix, there is no
pair which has # = y. Therefore, P[X =Y] =|0]

(ix) First, we calculate the values of = X y:

z\y 2 4 5
1 2 4 5
3 6 12 15
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Then, each zxy is weighted (multiplied) by the corresponding probability px y (2, y):

x\y 2 4 5
1 0.04 0.40 0.40
3 0.48 3.84 6.00

Finally, E[XY] is sum of these numbers. Therefore, E [XY] =|11.16|.

(x) First, we calculate the values of (z — 3) x (y — 2):

z\y 2 4 5
1 0 —4 —6
3 0 0 0

Then, each (z — 3) x (y — 2) is weighted (multiplied) by the corresponding prob-
ability px vy (z,y):

y—2 0 2 3

r—3 x\y 2 4 5
-2 1 0 —040 -—-0.48
0 3 [0 0 0 ]

Finally, E[(X — 3)(Y — 2)] is sum of these numbers. Therefore,

E[(X - 3)(¥ —2)] = [~0.88]

(xi) First, we calculate the values of z(y® — 11y* + 38y):
- 11y2 +38y 40 40 40

z\y 2 4 5
1 40 40 40
3 120 120 120

Then, each z(y® — 11y* + 38y) is weighted (multiplied) by the corresponding

probability pxy(z,y):
r\y 2 4 5
1 0.8 4.0 3.2
3 [9.6 38.4 48.0}

Finally, E [X (Y3 — 11Y? + 38Y')] is sum of these numbers. Therefore,
E [X(Y? —11Y? + 38Y)] = [104].
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(xii) Cov|[X,Y] =E[XY] - EXEY = 11.16 — (2.6)(4.28) =[0.032].
(xi) py = 2] = awe

(b) pxx = szx[f)’(X] = Vfg[(X} = '

()

(i) Cov[3X +4,6Y —7] =3x6x Cov[X,Y]~3x6x0.032~|0.576|.
(ii) Note that

Cov [aX + b, cY +d]

OaX+b0cY +d

acCov [X,Y]  ac

= = pxy = sign(ac) X pxy.
lalox|cloy  |ac|

Hence, P3X+4,6Y -7 = 81gn(3 X 4)pX7y =pxy = 0.0447 |.
(iif) Cov[X,6X —7] =1 x 6 x Cov[X, X] = 6 x Var[X] ~|3.84].
(iv) pxex—7 = sign(l x 6) x px.x =[1].

Problem 2. Suppose X ~ binomial(5,1/3), Y ~ binomial(7,4/5), and X Il Y. Evaluate
the following quantities.

PaX+b,cY+d =

(a) E[(X =3)(Y —2)]
(b) Cov[X,Y]
(C) PXY

Solution:

(a) First, because X and Y are independent, we have E [(X — 3)(Y —2)] =E[X —3]E[Y —2].
Recall that E [aX + b] = aE [X]|+b. Therefore, E[X —3|E[Y — 2] = (E[X]| - 3)(E[Y] - 2)
Now, for Binomial(n, p), the expected value is np. So,

(E[X] - 3) (E[Y] —2) = (5><%—3> <7x%—2):—§x§: —% _ 48

(b) Cov|[X,Y]=[0]because X 1L Y.

(c¢) pxy =|0] because Cov [X,Y] =0
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Problem 3. Suppose Var X = 5. Find Cov [X, X] and px x.
Solution:

(a) Cov[X,X] =E[(X —EX)(X —EX)] =E[(X - EX)? = Var X =[5]

Cov[X, X
(0) pxx = S5 = =i =l

Problem 4. Suppose we know that ox = \{_2;17 oy = 26 PXY = — .

(a) Find Var[X + Y.
(b) Find E[(Y — 3X +5)?]. Assume E[Y —3X +5] = 1.
Solution:

(a) First, we know that Var X = 0% = 25, VarY = o} = 2, and Cov [X,Y] = pxy X

Ox X Oy = —%. Now,
Var[X + Y] =E[(X +Y) —E[X + Y])*] =E [((X — EX) + (Y — EY))*]
—E[(X —EX)?] + 2E[(X —EX) (Y —EY)] +E [(Y — EY)’]
= Var X + 2Cov [X,Y] + VarY

389
=700 = 3.89.

Remark: It is useful to remember that
Var [X 4+ Y] = Var X + 2Cov [ X, Y] + VarY.

Note that when X and Y are uncorrelated, Var [X + Y| = Var X+ Var Y. This simpler
formula also holds when X and Y are independence because independence is a stronger
condition.

(b) First, we write

Y—aX-b=(Y —EY)—a(X —EX)— (aEX +b—EY).

-

Now, using the expansion
(u+v+1t)° =1+ 0%+ 1%+ 2uv + 2ut + 2ut,

we have

(Y —aX —b)? = (Y —EY)* 4+ a}(X —EX)* 4 ¢
—2a(X —EX)(Y —EY)—2c(Y —EY)+2a(X —EX)c.
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Recall that E[X —EX] =E[Y — EY] = 0. Therefore,
E[(Y —aX — b)Q] = VarY + a* Var X + ¢ — 2aCov [X, Y]

Plugging back the value of ¢, we have

E[(Y —aX —b)’] = VarY +a*Var X + (E[(Y — aX —b)])? — 2aCov [X, Y]|.

Here, a = 3 and b = —5. Plugging these values along with the given quantities into
the formula gives
721
E[(Y —aX —b)?] =| = |=T7.2L

Problem 5. The input X and output Y of a system subject to random perturbations are
described probabilistically by the joint pmf pxy(x,y), where x =1,2,3 and y = 1,2, 3,4, 5.
Let P denote the joint pmf matrix whose 4,5 entry is px y (4, j), and suppose that

1 7 2 8 5 4
P=7—1 4 25 5 9
2 48 51

a) Find the marginal pmfs px(z) and py (y).

(
(b) Find EX

)

)
(c¢) Find EY
(d) Find Var X
(e) Find VarY

Solution: All of the calculations in this question are simply plugging numbers into
appropriate formula. The MATLAB codes are provided in the file P_XY marginal 2.m.

(a) The marginal pmf px(z) is founded by the sums along the rows of the pmf matrix:

26/71, =1 0.3662, = =1
25/71, x =2 ) 03521, 2=2

px (@) = 20/71, = =3 ~N 02817, x=3
0, otherwise 0, otherwise.
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The marginal pmf py (y) is founded by the sums along the columns of the pmf matrix:

(13/71, y=1 (01831, y=1
8/71, y=2 0.1127, y =2
21/71, y=3 ) 02958, y=3
Py (y) = 15/71, y=4 ~\ 02113, y=4
14/71, y=5 0.1972, y=5
0, otherwise L 0, otherwise.

EX = 86 ~ 19155

71

Var X = gg% ~ 0.6407

)
) EY = 222 ~ 3.1268
)
)

_ 9220
VarY = 220 5 1.8290

Problem 6. Suppose X ~ binomial(5,1/3), Y ~ binomial(7,4/5), and X Il Y.

(a) A vector describing the pmf of X can be created by the MATLAB expression:

x = 0:5; pX = binopdf(x,5,1/3).

What is the expression that would give pY, a corresponding vector describing the pmf
of Y7

(b) Use pX and pY from part (a), how can you create the joint pmf matrix in MATLAB? Do

7 [43 7 «

not use “for-loop”, “while-loop”, “if statement”. Hint: Multiply them in an appropriate
orientation.

(c) Use MATLAB to evaluate the following quantities. Again, do not use “for-loop”, “while-
loop”, “if statement”.

(i) EX
(i) P[X =Y]
(i) P[XY < 6]

Solution: The MATLAB codes are provided in the file P XY_jointfromMarginal indp.m.

0:7; pY = binopdf(y,7,4/5);

—~
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I

pX.  *pY;
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(c)
(i) EX =[1.667

(i) PIX =Y]=
(iii) PXY < 6] =[0.2727
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