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8.3 Families of Discrete Random Variables

Many physical systems can be modeled by the same or similar
random experiments and random variables. In this subsection,
we present the analysis of several discrete random variables that
frequently arise in applications.34

Definition 8.25. X is uniformly distributed on a finite set S
if

pX(x) = P [X = x] =

{ 1
|S| , x ∈ S,
0, otherwise,

• We write X ∼ U(S) or X ∼ Uniform(S).

• Read “X is uniform on S” or
“X is a uniform random variable on set S”.

• The pmf is usually referred to as the uniform discrete distri-
bution.

• Simulation: When the support S contains only consecutive in-
tegers35, it can be generated by the command randi in MATLAB

(R2008b).
34As mention in 7.19, we often omit a discussion of the underlying sample space of the

random experiment and directly describe the distribution of a particular random variable.
35or, with minor manipulation, only uniformly spaced numbers
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Example 8.26. X is uniformly distributed on 1, 2, . . . , n if

In MATLAB, X can be generated by randi(n).

Example 8.27. Uniform pmf is used when the random variable
can take finite number of “equally likely” or “totally random” val-
ues.

• Classical game of chance / classical probability

• Fair gaming devices (well-balanced coins and dice, well-shuffled
decks of cards)

Example 8.28. Roll a fair dice. Let X be the outcome.

Definition 8.29. X is a Bernoulli random variable if

pX (x) =


1− p, x = 0,
p, x = 1,
0, otherwise,

p ∈ (0, 1)

• Write X ∼ B(1, p) or X ∼ Bernoulli(p)

• X takes only two values: 0 or 1

Example 8.30. Plot the pmf and cdf of the RV X ∼ Bernoulli(p).

Definition 8.31. X is a binary random variable if

pX (x) =


1− p, x = a,
p, x = b,
0, otherwise,

p ∈ (0, 1), b > a.
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• X takes only two values: a or b

Definition 8.32. X is a binomial random variable with param-
eters n ∈ N and p ∈ (0, 1) if

pX (x) =

{ (
n
x

)
px(1− p)n−x, x ∈ {0, 1, 2, . . . , n},

0, otherwise
(12)

• Write X ∼ B(n, p) or X ∼ binomial(n, p).

◦ Observe that B(1, p) is Bernoulli with parameter p.

• To calculate pX(x), can use binopdf(x,n,p) in MATLAB.

• Interpretation: X is the number of successes in n independent
Bernoulli trials. The formula follows directly from 6.55.

• Simulation: To generate such RV, use binornd(n,p) in MATLAB.

Example 8.33. X ∼ binomial (10, 0.3)
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Figure 17:
The expres-
sion and the
plot of the
pmf for X ∼
binomial (10, 0.3)

107



Example 8.34. Find P [X > 3] and P [X > 0] for the following
random variables:

(a) X ∼ Uniform({1, 2, . . . , 15})

(b) X ∼ Bernoulli(0.7)

(c) X ∼ binomial
(
2, 1

2

)

Example 8.35. An optical inspection system is to distinguish
among different part types. The probability of a correct classi-
fication of any part is 0.98. Suppose that three parts are inspected
and that the classifications are independent.

(a) Let the random variable X denote the number of parts that
are correctly classified. Determine the probability mass func-
tion of X. [15, Q3-20]

(b) Let the random variable Y denote the number of parts that
are incorrectly classified. Determine the probability mass
function of Y .

Solution :

108



(a) X is a binomial random variable with n = 3 and p = 0.98. Hence,

pX (x) =

{ (
3
x

)
0.98x(0.02)3−x, x ∈ {0, 1, 2, 3},

0, otherwise
(13)

In particular, pX(0) = 8 × 10−6, pX(1) = 0.001176, pX(2) = 0.057624, and
pX(3) = 0.941192. Note that in MATLAB, these probabilities can be calculated
by evaluating binopdf(0:3,3,0.98).

(b) Y is a binomial random variable with n = 3 and p = 0.02. Hence,

pY (y) =

{ (
3
y

)
0.02y(0.98)3−y, y ∈ {0, 1, 2, 3},

0, otherwise
(14)

In particular, pY (0) = 0.941192, pY (1) = 0.057624, pY (2) = 0.001176, and
pY (3) = 8 × 10−6. Note that in MATLAB, these probabilities can be calculated
by evaluating binopdf(0:3,3,0.02).

Alternatively, note that there are three parts. If X of them are classified
correctly, then the number of incorrectly classified parts is n − X, which is
what we defined as Y . Therefore, Y = 3 − X. Hence, pY (y) = P [Y = y] =
P [3−X = y] = P [X = 3− y] = pX(3− y).

Example 8.36. Daily Airlines flies from Amsterdam to London
every day. The price of a ticket for this extremely popular flight
route is $75. The aircraft has a passenger capacity of 150. The
airline management has made it a policy to sell 160 tickets for this
flight in order to protect themselves against no-show passengers.
Experience has shown that the probability of a passenger being
a no-show is equal to 0.1. The booked passengers act indepen-
dently of each other. Given this overbooking strategy, what is the
probability that some passengers will have to be bumped from the
flight?

Solution : This problem can be treated as 160 independent trials of a Bernoulli
experiment with a success rate of p = 9/10, where a passenger who shows up for
the flight is counted as a success. Use the random variable X to denote number
of passengers that show up for a given flight. The random variable X is binomial
distributed with the parameters n = 160 and p = 9/10. The probability in question
is given by

P [X > 150] = 1− P [X ≤ 150] = 1− FX(150).

In MATLAB, we can enter 1-binocdf(150,160,9/10) to get 0.0359. Thus, the prob-

ability that some passengers will be bumped from any given flight is roughly 3.6%.

[21, Ex 4.1]
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Example 8.37. Suppose X ∼ U ({1, 4, 7}). Plot the cdf of X.

Example 8.38. Suppose X ∼ binomial ({2, 0.2})
(a) What are the possible values of X?

(b) Find the (default) support of X.

(c) Find P [X > 2].

Example 8.39 (M2013Q6). Consider a sample space Ω = {1, 2, 3}.
Suppose, for ω = 1, 2, 3, we have

P ({ω}) =
c− |ω − 2|

4

for some constant c.
Define another random variable Y by Y (ω) =

√
|(ω − 2|.

(a) Is Y a uniform random variable?

(b) Is Y a Bernoulli random variable?

(c) Is Y a Binomial random variable?
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8.40. Defining discrete random variables from the Bernoulli trials:

010001011000101110000101011100…

The number of 1s in n trials is a 
binomial random variable with 
parameter (n,p)

The number of trials 
until the next 1 is a 
geometric1 random 
variable.

The number of 0 
until the next 1 is a 
geometric0 random 
variable.

In the limit, as
n  and p  0
while  np = ,

The number of 1s is a Poisson 
random variable with parameter 
= np.

Figure 18: Many discrete random variables discussed in our class can be defined
via the Bernoulli trials. Here, successes and failures are denoted by 1 and 0,
respectively.

Definition 8.41. A geometric random variable X is defined by
the fact that for some constant β ∈ (0, 1),

pX(k + 1) = β × pX(k)

for all k ∈ S where S can be either N or N ∪ {0}.

(a) When its support is N = {1, 2, . . .},

pX(x) =

{
(1− β) βx−1, x = 1, 2, . . .
0, otherwise.

• In MATLAB, to evaluate pX(x), use geopdf(x-1,1-β).

• Interpretation: X is the number of trials required in
Bernoulli trials to achieve the first success.
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In particular, in a series of Bernoulli trials (independent
trials with constant probability p of a success), let the
random variable X denote the number of trials until the
first success. Then X is a geometric random variable with
β = 1− p and

pX(x) =

{
(1− β) βx−1, x = 1, 2, . . .
0, otherwise

=

{
p(1− p)x−1, x = 1, 2, . . .
0, otherwise.

• Write X ∼ G1(p) or geometric1(p).

(b) When its support is N ∪ {0},

pX(x) =

{
(1− β) βx, x = 0, 1, 2, . . .
0, otherwise

=

{
p(1− p)x, x = 0, 1, 2, . . .
0, otherwise.

• Write X ∼ G0 (p) or geometric0 (p).

• In MATLAB, to evaluate pX(x), use geopdf(x,1-β).

• Interpretation: X is the number of failures in Bernoulli
trials before the first success occurs.

8.42. In 1837, the famous French mathematician Poisson intro-
duced a probability distribution that would later come to be known
as the Poisson distribution, and this would develop into one of the
most important distributions in probability theory. As is often re-
marked, Poisson did not recognize the huge practical importance of
the distribution that would later be named after him. In his book,
he dedicates just one page to this distribution. It was Bortkiewicz
in 1898, who first discerned and explained the importance of the
Poisson distribution in his book Das Gesetz der Kleinen Zahlen
(The Law of Small Numbers). [21]
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Definition 8.43. X is a Poisson random variable with param-
eter α > 0 if

pX (x) =

{
e−αα

x

x! , x = 0, 1, 2, . . .
0, otherwise

• In MATLAB, use poisspdf(x,alpha).

• Write X ∼ P (α) or Poisson(α).

• We will see later in Example 9.7 that α is the “average” or
expected value of X.

• Instead of X, Poisson random variable is usually denoted by
Λ. The parameter α is often replaced by λτ where λ is referred
to as the intensity/rate parameter of the distribution

Example 8.44. The first use of the Poisson model is said to have
been by a Prussian (German) physician, Bortkiewicz, who found
that the annual number of late-19th-century Prussian (German)
soldiers kicked to death by horses fitted a Poisson distribution [6,
p 150],[3, Ex 2.23]36.

Example 8.45. The number of hits to a popular website during
a 1-minute interval is given by N ∼ P(α) where α = 2.

(a) Find the probability that there is at least one hit between
3:00AM and 3:01AM.

(b) Find the probability that there are at least 2 hits during the
time interval above.

36I. J. Good and others have argued that the Poisson distribution should be called the
Bortkiewicz distribution, but then it would be very difficult to say or write.
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8.46. One of the reasons why Poisson distribution is important is
because many natural phenomenons can be modeled by Poisson
processes .

8.47. A Poisson process (PP) is a particular kind of random
arrangement of “marks” (denoted by “×” or “?”) on the time line.

Time

The “marks” may indicate the arrival times or occurrences of
event/phenomenon of interest.

Example 8.48. Examples of processes that can be modeled by
Poisson process include

(a) the sequence of times at which lightning strikes occur or mail
carriers get bitten within some region

(b) the emission of particles from a radioactive source

(c) the arrival of

• telephone calls at a switchboard or at an automatic phone-
switching system

• urgent calls to an emergency center

• (filed) claims at an insurance company

• incoming spikes (action potential) to a neuron in human
brain

(d) the occurrence of

• serious earthquakes

• traffic accidents

• power outages

in a certain area.

(e) page view requests to a website
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8.49. It is convenient to consider the Poisson process in terms of
customers arriving at a facility.

We focus on a type of Poisson process that is called homogeneous
Poisson process.

Definition 8.50. For homogeneous Poisson process, there is
only one parameter that describes the whole process. This number
is call the rate and usually denoted by λ.

Example 8.51. If you think about modeling customer arrival as
a Poisson process with rate λ = 5 customers/hour, then it means
that during any fixed time interval of duration 1 hour (say, from
noon to 1PM), you expect to have about 5 customers arriving in
that interval. If you consider a time interval of duration two hours
(say, from 1PM to 3PM), you expect to have about 2 × 5 = 10
customers arriving in that time interval.

8.52. One important fact which we will revisit later is that, for
a homogeneous Poisson process, the number of arrivals N during
a time interval of duration T is a Poisson random variable with
parameter α = λT .

Time

T

N

Example 8.53. Examples of Poisson random variables :

• #photons emitted by a light source of intensity λ [photon-
s/second] in time τ

• #atoms of radioactive material undergoing decay in time τ

• #clicks in a Geiger counter in τ seconds when the average
number of click in 1 second is λ.

115



• #dopant atoms deposited to make a small device such as an
FET

• #customers arriving in a queue or workstations requesting
service from a file server in time τ

• Counts of demands for telephone connections in time τ

• Counts of defects in a semiconductor chip.

Example 8.54. Thongchai produces a new hit song every 7 months
on average. Assume that songs are produced according to a Pois-
son process. Find the probability that Thongchai produces more
than two hit songs in 1 year.

8.55. Poisson approximation of Binomial distribution: When
p is small and n is large, B(n, p) can be approximated by P(np)

(a) In a large number of independent repetitions of a Bernoulli
trial having a small probability of success, the total number of
successes is approximately Poisson distributed with parame-
ter α = np, where n = the number of trials and p = the
probability of success. [21, p 109]

(b) More specifically, supposeX ∼ B(n, pn). If pn → 0 and npn →
α as n→∞, then for x = 0, 1, 2, . . ., we have

P [X = x] =

(
n

x

)
pxn(1− pn)n−x

n→∞−−−→ e−α
αx

x!
.

To see this, note that the first x (largest) terms of n! is of the form x−k where
k = 0, 1, 2, . . . , x − 1. Each of them can be bounded by n − x ≤ n − k ≤ n.
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Therefore, (n−x)x
x! ≤

(
n
x

)
≤ nx

x! . For example, 43

3! ≤
(
7
3

)
= 7×6×5

3! ≤ 73

3! . Hence,

P [X = x] =

(
n

x

)
1

nx︸ ︷︷ ︸
→ 1
x!

(npn)x︸ ︷︷ ︸
→αx

(1− pn)n︸ ︷︷ ︸
=(1−npn

n
)n→e−α

(1− pn)−x︸ ︷︷ ︸
→1

.

Example 8.56. Consider X ∼ B(n, 1/n). (We have already seen
this in Example 6.57.) For x = 0, 1, 2, . . ., we have

P [X = x] =

(
n

x

)(
1

n

)x(
1− 1

n

)n−x
n→∞−−−→ 1

x!e
.

1

1

e

1

2e

1

3!e

1  2 

1
2

2
1!

e e  


2
2

2
2!

e e  


3
24

3! 3
e e  


0

2

0!
e e  



0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

n

 

 

P[X = 0]

P[X = 1]

P[X = 2]

P[X = 3]

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

n

 

 

P[X = 0]

P[X = 1]

P[X = 2]

P[X = 3]

Figure 19: Pointwise convergence of the Binomial
(
n, α

n

)
pmf to the poisson pmf

when α = 1 and α = 2.

Example 8.57. Consider X ∼ B(n, α/n). For x = 0, 1, 2, . . ., we
have

P [X = x] =

(
n

x

)(α
n

)x(
1− α

n

)n−x n→∞−−−→ e−α
αx

x!
.
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Example 8.58. In one of the New York state lottery games, a
number is chosen at random between 0 and 999. Suppose you play
this game 250 times. Use the Poisson approximation to estimate
the probability that you will never win and compare this with the
exact answer. [3, Q2.41]

Solution : LetW be the number of wins. Then, W ∼ Binomial(250, p)
where p = 1/1000. Hence, P [W = 0] =

(
250
0

)
p0(1−p)250 ≈ 0.7787.

If we approximate W by Λ ∼ P(α). Then we need to set α =
np = 250

1000 = 1
4 . In which case, P [Λ = 0] = e−αα

0

0! = e−α ≈ 0.7788
which is very close to the answer from direct calculation.

Example 8.59. Recall that Bortkiewicz applied the Poisson model
to the number of Prussian cavalry deaths attributed to fatal horse
kicks. Here, indeed, one encounters a very large number of trials
(the Prussian cavalrymen), each with a very small probability of
“success” (fatal horse kick).

8.60. Summary:

X ∼ Support SX pX (x) =

Uniform U(S) S

{ 1
|S| , x ∈ S,
0, otherwise.

Bernoulli(p) {0, 1}


1− p, x = 0,
p, x = 1,
0, otherwise.

Binomial B(n, p) {0, 1, . . . , n}
{ (

n
x

)
px(1− p)n−x, x = 0, 1, 2, . . . , n,

0, otherwise.

Geometric G0(p) N ∪ {0}
{
p(1− p)x, x = 0, 1, 2, . . . ,
0, otherwise.

Geometric G1(p) N
{
p(1− p)x−1, x = 1, 2, . . . ,
0, otherwise.

Poisson P(α) N ∪ {0}
{
e−α α

x

x!
, x = 0, 1, 2, . . . ,

0, otherwise

Table 3: Examples of probability mass functions. Here, p ∈ (0, 1). α > 0.
n ∈ N
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8.4 Some Remarks

8.61. Sometimes, it is useful to define and think of pmf as a vector
p of probabilities.

When you use MATLAB, it is also useful to keep track of the
values of x corresponding to the probabilities in p. This can be
done via defining a corresponding vector x.

Example 8.62. For B
(
3, 1

3

)
, we may define

x = [0, 1, 2, 3]

and

p =

[(
3

0

)(
1

3

)0(2

3

)3

,

(
3

1

)(
1

3

)1(2

3

)2

,

(
3

2

)(
1

3

)2(2

3

)1

,

(
3

3

)(
1

3

)3(2

3

)0
]

=

[
8

27
,
4

9
,
2

9
,

1

27

]
8.63. At this point, we have a couple of ways to define probabil-

ities that are associated with a random variable X

(a) We can define P [X ∈ B] for all possible set B.

(b) For discrete random variable, we only need to define its pmf
pX(x) which is defined as P [X = x] = P [X ∈ {x}].

(c) We can also define the cdf FX(x).

Definition 8.64. If pX(c) = 1, that is P [X = c] = 1, for some
constant c, then X is called a degenerated random variable.
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