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Discrete Random Variable
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 A random variable is discrete if its values can be limited to 
only a countable number of possibilities. 

 Recall that “countable”  means
 finite or
 Countably infinite.

 Crucial skill 8.1.1: Determine whether a RV is discrete.



Chapter 5 vs. Chapter 8
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 In Chapter 5, probability of any countable event can be 
found by knowing the probability for each 
outcome .

 In Chapter 8, probability of any statement about a 
discrete RV X can be found by using probability of the 
form (without referring back to the 
outcomes and the sample space).
 Because is important and use frequently, 

as a function of x, we name it the probability mass 
function (pmf).

 Definition: ௑



Section 8.1
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 Crucial skill 8.1.1: Determine whether a RV is discrete.

 Crucial skill 8.1.2: Determine the probability mass function 
(pmf) of a discrete RV when it is defined as a function of 
outcomes (as in Chapter 7).



Chapter 7 vs. Chapter 8
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 In Chapter 7, RV are defined as a function of the outcomes.

 In Chapter 8, we want to talk about RV directly, skipping the 
outcomes. 
 So, need to find ways to calculate probability without going 

back to the sample space.

Chapter 5:
Probability of any event 
can be found by knowing 
the probability 𝑃 𝜔
for each outcome 𝜔.

Chapter 7:
Probability of any statement 
about a RV can be found by 
converting the statement back 
into a collection of outcomes 
satisfying the statement.
• See “Method 2” in Chapter 

7.
• Still use 𝑃 𝜔

Chapter 8:
• 𝑃 𝜔 is not 

available.
Probability of any 
statement about a discrete 
RV X will be found by 
using probability of the 
form 𝑃 𝑋 ൌ 𝑥 .



Example 8.15: pmf and probabilities
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Consider a random variable (RV) X.
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Consider a random variable (RV) X.



Example: pdf and its interpretation
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Example: pdf and its interpretation
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Example: pdf and its interpretation
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Consider a random variable (RV) X.



Example: Support of a RV
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Consider a random variable (RV) X.



Example: Support of a RV

12

 
 

1 , 1,2
1 , 2,4
1 , 3,48
0, otherwise

X

x

x
p x

x

 

  
 



probability mass function (pmf)

1   2   3   4

The set {1,2,3,4} is a 
support of X.
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Example: Support of a RV
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Consider a random variable (RV) X.



Example: Support of a RV
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Example: Support of a RV
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Consider a random variable (RV) X.



Example: Support of a RV
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