Sirindhorn International Institute of Technology Thammasat University at Rangsit

School of Information, Computer and Communication Technology

COURSE	$:$ ECS 210 Basic Electrical Engineering Lab
INSTRUCTOR	$:$ Dr. Prapun Suksompong (prapun@ siit.tu.ac.th)
WEB SITE	$: \underline{\text { http://www2.siit.tu.ac.th/prapun/ecs210/ }}$
EXPERIMENT	$: 05$ RC Circuit and Resonant RLC Circuit

I. OBJECTIVES

1. To investigate RC circuit with voltage step input.
2. To determine the resonant frequency and frequency response of a series RLC circuit.

II. BASIC INFORMATION

II. 1 RC Circuit with Voltage Step Input

1. An RC circuit with voltage step input is shown in Figure 5-1-1. From KCL, we have

$$
C \frac{d}{d t} v_{\text {out }}(t)+\frac{v_{\text {out }}(t)-v_{\text {in }}(t)}{R}=0 .
$$

If the input voltage $v_{\text {in }}(t)$ is fixed at a particular value V_{S} from time t_{1} to t_{2}, then the output voltage $v_{\text {out }}(t)$ during this time interval is given by

$$
\begin{equation*}
v_{\text {out }}(t)=V_{S}+\left(v_{\text {out }}\left(t_{1}\right)-V_{S}\right) e^{-\frac{t-t_{1}}{\tau}}, t_{1} \leq t \leq t_{2}, \tag{1}
\end{equation*}
$$

where $v_{\text {out }}\left(t_{1}\right)$ is the initial output voltage (for this interval which starts at time t_{1}) and $\tau=R C$ is the time constant.
2. For simplicity, assume $t_{1}=0$. Then, the output voltage is given by

$$
v_{\text {out }}(t)=V_{S}+\left(v_{\text {out }}(0)-V_{S}\right) e^{-\frac{t}{\tau}} .
$$

Further assume that $v_{\text {out }}(0)=0$. Then

$$
v_{\text {out }}(t)=V_{S}-V_{S} e^{-\frac{t}{\tau}}=V_{S}\left(1-e^{-\frac{t}{\tau}}\right) .
$$

Therefore, the voltage across the capacitor increases from 0 to V_{S} and we say that the capacitor is charging. Note that in one time constant $(t=\tau)$, the capacitor is charged to approximately $V_{S}\left(1-e^{-1}\right) \approx 0.63 V_{S}$, i.e. the voltage across the capacitor becomes approximately 63 percent of V_{S}.

Figure 5-1-1: Pulse input voltage and the voltage across a capacitor.
3. In Part A of this experiment, the input voltage $v_{i n}(t)$ is a square-wave; $v_{i n}(t)$ will be 0 or V_{S}.
4. When $v_{i n}(t) \equiv 0$ from time t_{1} to t_{2}, the solution (1) above gives

$$
v_{\text {out }}(t)=0+\left(v_{\text {out }}\left(t_{1}\right)-0\right) e^{-\frac{t-t_{1}}{\tau}}=v_{\text {out }}\left(t_{1}\right) e^{-\frac{t-t_{1}}{\tau}}, t_{1} \leq t \leq t_{2},
$$

For simplicity, assume that $t_{1}=0$ and that the initial output voltage $v_{\text {out }}\left(t_{1}\right)=V_{0}$. Then,

$$
v_{\text {out }}(t)=V_{0} e^{-\frac{t}{\tau}} .
$$

Therefore, the voltage across the capacitor decreases from V_{0} to 0 and we say that the capacitor is discharging. In one time constant $(t=\tau)$, the capacitor is discharged to approximately $V_{0} e^{-\frac{\tau}{\tau}}=\frac{V_{0}}{e} \approx 0.37 V_{0}$, or 37% of the initial voltage V_{0}.
5. Half Life. The half life $t_{\text {half }}$ is the time t that is needed for the output voltage of a discharging capacitor to decrease from V_{0} to $V_{0} / 2$. At such time,

$$
\frac{V_{0}}{2}=V_{0} e^{-\frac{t}{\tau}} .
$$

Solving for t in the above equation gives

$$
t_{\text {half }}=\tau \ln 2 .
$$

6. In part A of this experiment, the value of τ are found using three different methods (see Figure 5-1-2):
1) Measure $t_{0.37}$. Then, $\tau=t_{0.37}$.
2) Measure $t_{\text {half }}$. Then, calculate $\tau=t_{\text {half }} / \ln 2$.
3) Measure R and C . Then, calculate $\tau=R C$.

Figure 5-1-2: τ measurement.

II. 2 Series RLC Circuit

1. Resistors limit the amount of current in dc as well as in ac circuits. In addition to resistors, reactive components, such as inductors and capacitors, impede currents in ac circuits.
2. Inductive impedance of a coil is given by

$$
Z_{L}=j \omega L=j 2 \pi f L=j X_{L} \text { ohms }
$$

where $j=\sqrt{-1}, L$ is the inductance in henries, f is the frequency of the signal in the circuit, and $X_{L}=\operatorname{Im}\left\{Z_{L}\right\}=\omega L=2 \pi f L$ is the inductive reactance. The ac voltage across a coil, V_{L} is equal to the product of the alternating current I in the coil and the inductive impedance Z_{L} of the coil; that is $V_{L}=I Z_{L}$.
3. The capacitive impedance is given by

$$
Z_{C}=1 /(j \omega C)=1 /(j 2 \pi f C)=-j /(2 \pi f C)=-j X_{C} \text { ohms }
$$

where $X_{C}=1 /(\omega C)=1 /(2 \pi f C)$ is the capacitive reactance. Note that X_{C} is inversely proportional to the frequency and the capacitance.
4. A series RLC circuit and its impedance phasor diagram is shown in Figure 5-2. The impedance of the series RLC circuit is

$$
Z=R+Z_{L}+Z_{C}=R+j\left(X_{L}-X_{C}\right)=R+j\left(\omega L-\frac{1}{\omega C}\right)
$$

Figure 5-2: A series RLC circuit and its impedance phasor diagram.
5. Figure 5-3 illustrates how the impedance of a series RLC circuit changes with frequency. At zero frequency, both $1 /(\omega C)$ and Z are infinitely large, and ωL is zero. You may
recall that at 0 Hz , the capacitor acts like an open circuit, while the inductor acts like a short circuit.

As the frequency increases, $1 /(\omega C)$ decreases, and ωL increases. At the frequencies below the resonant frequency $f_{0}, \omega L<1 /(\omega C)$, the circuit, whose reactance $X=\operatorname{Im}\{Z\}$ is negative, is said to be capacitive. At the resonant frequency $f_{0}, \omega L=1 /(\omega C)$, so the circuit is purely resistive and $Z=R$. At the frequencies above $f_{0}, \omega L>1 /(\omega C)$, and the circuit, whose reactance $X=\operatorname{Im}\{Z\}$ is now positive, is said to be inductive. The minimum magnitude of the impedance occurs at a resonant frequency f_{0} where $X_{L}=X_{C}$, but increases in value when the frequency is above or below the resonant point.

Figure 5-3: Impedance magnitude of a series RLC circuit as a function of frequency.
6. For the series RLC circuit shown in Figure 5-2, the phasor current through all the circuit elements is given by

$$
I=\frac{V_{S}}{Z}=\frac{V_{S}}{R+j\left(\omega L-\frac{1}{\omega C}\right)} .
$$

The phasor voltages across the resistor, capacitor, and inductor can then be found via

$$
V_{R}=I R, V_{C}=I Z_{C}, \text { and } V_{L}=I Z_{L},
$$

respectively. Their magnitudes are shown in Figure 5-4-1.
7. Figure 5-4-2 shows the plot of $\left|V_{R}\right|$. Three significant points have been marked on the curve. These are f_{0}, the resonant frequency, and f_{1} and f_{2}. For series RLC circuits, the $\left|V_{R}\right|$ is maximum at f_{0}. Note that

$$
\left|V_{R}\right|=|I| R=\frac{\left|V_{S}\right| R}{\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}},
$$

where $\omega=2 \pi f$.

Figure 5-4-1: Voltage values across the resistor $\left(\left|V_{R}\right|\right)$, the capacitor $\left(\left|V_{C}\right|\right)$, and the inductor $\left(\left|V_{L}\right|\right)$ in a series RLC circuit.

Figure 5-4-2: Frequency response of a series RLC circuit.
The frequency f (or equivalently, the angular frequency ω) that maximizes $\left|V_{R}\right|$ must be the one that minimizes $(\omega L-1 /(\omega C))^{2}$. Because $(\omega L-1 /(\omega C))^{2}$ is nonnegative, if
we can make the squared term zero then we will get the minimum of its value which in turn will maximize $\left|V_{R}\right|$. Therefore, the maximum value of $\left|V_{R}\right|$ occurs at ω such that

$$
\omega L=\frac{1}{\omega C},
$$

which gives

$$
\omega_{0}=\frac{1}{\sqrt{L C}} \text { and } f_{0}=\frac{1}{2 \pi} \frac{1}{\sqrt{L C}} .
$$

Points f_{1} and f_{2} are located at $1 / \sqrt{2}$, which is approximately 70.7%, of the maximum (at f_{0}) on the curve. They are called the half power points, and the (angular) frequency separation between them is called the bandwidth (BW) of the circuit. For the series RLC circuit under consideration,

$$
B W=2 \pi\left(f_{2}-f_{1}\right)=\omega_{2}-\omega_{1}=\frac{R}{L} .
$$

Remarks:

(1) In general, the maximum values for $\left|V_{L}\right|$ and $\left|V_{C}\right|$ will NOT occur at resonant frequency. (See Figure 5-4-1.)
(2) At the resonant frequency, the voltages $\left|V_{L}\right|$ and $\left|V_{C}\right|$ across L and C, respectively, are equal.
8. For a circuit intended to be frequency selective, the sharpness of the selectivity is a measure of the circuit quality. The quality of the frequency response is described quantitatively in terms of the ratio of the resonance frequency to the bandwidth. This ratio is called the quality factor (\mathbf{Q}) of the circuit. Therefore,

$$
Q=\frac{\omega_{0}}{B W}=\frac{1}{R} \sqrt{\frac{L}{C}} .
$$

III. MATERIALS REQUIRED

- Function generator, multi-meter, and oscilloscope.
- Resistor: $100 \Omega, 1 \mathrm{k} \Omega$.
- Inductor: 22 mH .
- Capacitors: $0.01 \mu \mathrm{~F}, 0.47 \mu \mathrm{~F}$, and $0.1 \mu \mathrm{~F}$.

IV. EXPERIMENTS

Part A: RC Circuit with Square-Wave Input

Figure 5-5: RC Circuit with Voltage Square-Wave Input

1. Connect the circuit of Figure 5-5, where the oscilloscope is in DC mode. Note that Channel 1 is connected to the input voltage while Channel 2 is connected to the output voltage.
2. Set the output of the function generator to be a square wave with amplitude of $4 \mathrm{Vp}-\mathrm{p}$ and frequency of 500 Hz . Then set the DC offset level to 2 V , such that the square-wave waveform has its lower peak at 0 V and its higher peak at 4 V .
3. Adjust volts/div and time/div until the waveforms can be seen on the oscilloscope. Then, draw the voltage waveforms across the function generator (shown by dash line in Figure 5-1), and across the capacitor (shown by solid line) in Table 5-1.
4. Consider the time interval where the capacitor is discharging. Find the time constant τ by measuring the time $\mathrm{t}_{0.37}$ which is the amount of time that is needed for the voltage across the capacitor to drop from its maximum value to $1 / e \approx 0.37$ times the maximum value as shown in Figure 5-1-2. Put the value of $\mathrm{t}_{0.37}$ in Table 5-2.
5. Measure the half life $t_{\text {half }}$ during which the voltage across the capacitor drops to half of the maximum value.
6. Calculate τ by the following equation, and record the value in Table 5-2.

$$
\tau=\frac{t_{\text {half }}}{\ln 2}
$$

7. Calculate the product of R and C , and record the value in Table 5-2.

Part B: Series RLC circuit

Figure 5-7: The series RLC circuit.

1. Prepare one 22 mH inductor and three capacitors with values of $0.01,0.47$ and 0.1 $\mu \mathrm{F}$. Measure all values of the capacitors, and calculate the resonant frequency $f_{o}=$ $\omega_{0} / 2 \pi=\frac{1}{2 \pi \sqrt{L C}} \mathrm{~Hz}$ for each of the capacitors. Record the calculated resonant frequencies in Table 5-3 under "Calculated resonant frequency".
2. Connect the circuit of Figure 5-7 with $\mathrm{C}=0.01 \mu \mathrm{~F}$.
3. Increase the output of the generator until the scope indicates an 8 Vp -p voltage. Maintain/recheck this voltage throughout this part.
4. Observe the rms value of V_{R} across the resistor as the frequency of the generator is varied. Record the resonant frequency f_{0} at which V_{R} is maximum. Measure f_{0} and reeord the value in the " $0.01 \mu \mathrm{~F}$ " row of Table 5-3.

Caution: As you adjust the frequency f, the voltage across the generator output will change. Readjust it back to $8 \mathrm{~V}_{\mathrm{p} \text {-p }}$.
5. Replace the $0.01 \mu \mathrm{~F}$ with a $0.47 \mu \mathrm{~F}$ capacitor. Check the generator output voltage to verify that it is 8 Vp -p; adjust the voltage if necessary. Find f_{O} and record the value in the " $0.47 \mu \mathrm{~F}$ " row of Table 5-3.
6. Replace the $0.47 \mu \mathrm{~F}$ with a $0.1 \mu \mathrm{~F}$ capacitor. Check the generator output voltage and adjust to maintain 8 Vp -p. Find f_{0} and record the value in the " $0.1 \mu \mathrm{~F}$ " row of Table 53.
7. Check the generator output voltage, and adjust the value to maintain at $8 \mathrm{Vp}-\mathrm{p}$. With $\mathrm{C}=0.1 \mu \mathrm{~F}$, vary and record the frequency according to Table 5-4. Record the corresponding ${ }_{\wedge}^{\text {ralues }}$ of $V_{\mathrm{R}}, V_{\mathrm{L}}$, and V_{C} in Table $5-4$, where V_{L} and V_{C} are the voltage across L and C , respectively.

Table 5-1. Square wave input voltage and voltage across capacitor

volts/div = \qquad , time/div = \qquad .

TA Signature:

Table 5-2. Time constant of an RC circuit

τ from $\mathrm{t}_{0.37}$	τ from $\mathrm{t}_{\text {half }} / \ln 2$	τ from RC

TA Signature:
Table 5-3. Resonant frequency of a series RLC circuit

Inductor L, mH	Capacitor $\mathrm{C}, \mu \mathrm{F}$		Resonant Frequency $\mathrm{f}_{\mathrm{O}}, \mathrm{Hz}$	
	0.01		Calculated	Measured
22	0.47			
22	0.1			
22				

TA Signature:

Table 5-4. Frequency response of a series RLC circuit

Frequency deviation	Frequency f, Hz	Voltage across R, $\mathrm{V}_{\mathrm{R}}, \mathrm{V}$	Voltage across L, $\mathrm{V}_{\mathrm{L}}, \mathrm{V}$	Voltage across C, $\mathrm{V}_{\mathrm{C}}, \mathrm{V}$
$\mathrm{f}_{\mathrm{O}}-1000$				
$\mathrm{f}_{\mathrm{O}}-500$				
$\mathrm{f}_{\mathrm{O}}-200$				
$\mathrm{f}_{\mathrm{O}}-100$				
f_{O}				
$\mathrm{f}_{\mathrm{O}}+100$				
$\mathrm{f}_{\mathrm{O}}+200$				
$\mathrm{f}_{\mathrm{O}}+500$				
$\mathrm{f}_{\mathrm{O}}+1000$				

TA Signature:

QUESTIONS

True or False

1. \qquad In a circuit containing impedance, the current and voltage are 90 degrees out of phase.
2. \qquad The value of reactance in a series RLC circuit can exceed the magnitude of impedance.
3. \qquad The value of resistance in a series RLC circuit can exceed the magnitude of impedance.
4. \qquad In a series RLC circuit, the capacitor rms voltage can be greater than the source rms voltage.
5. \qquad A series RLC circuit operating above its resonant frequency is inductive.
6. \qquad There is only one combination of L and C for each resonant frequency.

Fill in the blanks.

10. The series RLC circuit in Figure 5-2 has an inductance of $100 \mu \mathrm{H}$, a capacitance of 200 pF , and a resistance of 10Ω. Determine its resonant frequency and bandwidth. Also determine $\mathrm{X}_{\mathrm{C}}, \mathrm{X}_{\mathrm{L}}, \mathrm{I}_{\mathrm{L}}$, and V_{L} at 1.0 MHz if the source voltage $V_{\mathrm{S}}=1.0 \mathrm{Vp}$.

Resonant frequency = \qquad
Bandwidth $=$ \qquad
At 1.0 MHz

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{C}}= \\
& \mathrm{X}_{\mathrm{L}}= \\
& \mathrm{I}_{\mathrm{L}}= \\
& \mathrm{V}_{\mathrm{L}}= \\
& \hline
\end{aligned}
$$

11. The series RLC circuit in Figure 5-2 has a capacitance of $25 \mu \mathrm{~F}$, and a resistance of 10 Ω. We then adjust the inductance until V_{R} is maximum. Determine $\mathrm{V}_{\mathrm{R}}, \mathrm{V}_{\mathrm{L}}$, and V_{C} at ω $=2000 \mathrm{rad} / \mathrm{sec}$ if the source voltage $\mathrm{V}_{\mathrm{S}}=50 \mathrm{Vp}$.

$$
\mathrm{V}_{\mathrm{R}}=
$$

$\mathrm{V}_{\mathrm{L}}=$ \qquad
$\mathrm{V}_{\mathrm{C}}=$ \qquad

Short Answers

12. What are the characteristics of series resonant circuits?
13. Suppose you set the voltage across the output of the signal generator at $2 \mathrm{~V}_{\text {rms }}$. You then connect the generator output across a 100Ω resistor. Now, you measure the voltage across the generator again but you get a value which is significantly less than $2 \mathrm{~V}_{\mathrm{rms}}$. Why?
14. How can you to adjust the DC offset of the signal generator?
15. Is changing the DC offset on the signal generator the same as changing the vertical position of the trace in oscilloscope? Explain.
16. What are the differences between the DC and AC mode of the oscilloscope?
