ECS 203 2015: Exercise 3 Solution

Instructions

- Separate into groups of no more than four persons. Make sure the group members are not exactly the same as any of your earlier group.
- Only one submission is needed for each group. Late submission will not be accepted.

:	Do not nonic
	showing how you get your answer.
	You may not get full credit even when your answer is correct without
ш.	write down dil the steps that you have done to obtain your answers.

Name	ID
Prapun	555

Do not panic.

1. Find v_0 in each of the circuits below.

Hint: Compare them (possibly under some circuit simplification) with the known amplifiers discussed in class.

This is a non-inverting amp.

$$V_0 = \left(1 + \frac{R_f}{R_4}\right) V_{\bar{k}} = \left(1 + \frac{15h}{30h}\right) \times 10 = \left(1 + \frac{1}{2}\right) \times 10$$

$$= \frac{3}{2} \times 10 = 15 \text{ V}$$

$$V_{0} = -\frac{R_{f}}{R_{1}}V_{2} = -\frac{45h}{26h} \times 10^{5} = -5 \text{ } \checkmark$$

After combining the 30ks and the 75ks into R=30k/75k = 30k×75k = 150 ks

we have an inverting amplifier.

So,
$$v_0 = -\frac{Rf}{R_1}v_1 = -\frac{15}{150/7} \times 10 = -7V$$

Alternatively, we may look at this circuit as a summing amplifier with 4= = = 10 V.