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10 Continuous Random Variables

10.1 From Discrete to Continuous Random Variables

In many practical applications of probability, physical situations
are better described by random variables that can take on a con-
tinuum of possible values rather than a discrete number of values.
For this type of random variable, the interesting fact is that

• any individual value has probability zero:

P [X = x] = 0 for all x (22)

and that

• the support is always uncountable

These random variables are called continuous random vari-
ables.

10.1. We can see from (22) that the pmf is going to be useless for
this type of random variable. It turns out that the cdf FX is still
useful and we shall introduce another useful function called prob-
ability density function (pdf) to replace the role of pmf. However,
integral calculus16 is required to formulate this continuous analog
of a pmf.

16This is always a difficult concept for the beginning student.
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Example 10.2. If you can measure the heights of people with
infinite precision, the height of a randomly chosen person is a con-
tinuous random variable. In reality, heights cannot be measured
with infinite precision, but the mathematical analysis of the dis-
tribution of heights of people is greatly simplified when using a
mathematical model in which the height of a randomly chosen
person is modeled as a continuous random variable. [19, p 284]

Example 10.3. Continuous random variables are important mod-
els for

(a) voltages in communication receivers

(b) file download times on the Internet

(c) velocity and position of an airliner on radar

(d) lifetime of a battery

(e) decay time of a radioactive particle

(f) time until the occurrence of the next earthquake in a certain
region

Example 10.4. The simplest example of a continuous random
variable is the “random choice” of a number from the interval
(0, 1).

• In MATLAB, this can be generated by the command rand.
In Excel, use rand().

• The generation is “unbiased” in the sense that “any number
in the range is as likely to occur as another number.”

• Again, because this is a continuous random variable, the prob-
ability that the randomly chosen number will take on a pre-
specified value is zero. 17

• Histogram is flat over [0, 1].

17So the above statement is true but not useful because it is true for all continuous random
variables anyway. For any continuous random variable, the probability of a particular value
x is 0 for any x; so they all have the same probability.
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Definition 10.5. We say that X is a continuous random vari-
able18 if we can find a (real-valued) function f such that, for any
set B, P [X ∈ B] has the form

P [X ∈ B] =

∫
B

f(x)dx.

• In particular,

P [a ≤ X ≤ b] =

∫ b

a

f(x)dx.

In other words, the area under the graph of f(x) between
the points a and b gives the probability P [a ≤ X ≤ b].

• The function f is called the probability density function
(pdf) or simply density.

• When we want to emphasize that the function f is a density
of a particular random variable X, we write fX instead of f .

• Recall that when X is a discrete random variable,

18To be more rigorous, this is the definition for absolutely continuous random variable. At
this level, we will not distinguish between the continuous random variable and absolutely
continuous random variable. When the distinction between them is considered, a random
variable X is said to be continuous (not necessarily absolutely continuous) when condition (22)
is satisfied. Alternatively, condition (22) is equivalent to requiring the cdf FX to be continuous.
Another fact worth mentioning is that if a random variable is absolutely continuous, then it
is continuous. So, absolute continuity is a stronger condition.
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Example 10.6. For the random variable generated by the rand()
command in Excel,

Definition 10.7. Recall that the support SX of a random variable
X is any set S such that P [X ∈ S] = 1. For continuous random
variable, SX is usually set to be {x : fX(x) > 0}.

10.2 Properties of PDF and CDF for Continuous Ran-
dom Variables

10.8. The cdf of any kind of random variable X is defined as

FX(x) = P [X ≤ x] .

10.9. For continuous random variable, given the pdf fX(x), we
can find the cdf of X by

FX(x) = P [X ≤ x] =

∫ x

−∞
fX(t)dt.

10.10. Given the cdf FX(x), we can find the pdf fX(x) by

• If FX is differentiable at x, we will set

d

dx
FX(x) = fX(x).

• If FX is differentiable at x, we can set the values of fX(x) to
be any value. Usually, the values are selected to give simple
expression.

Example 10.11. For the random variable generated by the rand()
command in Excel,
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Example 10.12. Suppose that the lifetime X of a device has the
cdf

FX (x) =


0, x < 0
1
4x

2, 0 ≤ x ≤ 2
1, x > 2

Observe that it is differentiable at each point x except for the
two points x = 0 and x = 2. The probability density function is
obtained by differentiation of the cdf which gives

fX (x) =

{
1
2x, 0 < x < 2
0, otherwise.

In each of the finite number of points x at which FX has no deriva-
tive, it does not matter what values we give fX . These values do
not affect

∫
B fX(x)dx. Usually, we give fX(x) the value 0 at any

of these exceptional points.

10.13. Unlike the cdf of a discrete random variable, the cdf of a
continuous random variable has no jumps and is continuous every-
where.

10.14. pX(x) = P [X = x] = P [x ≤ X ≤ x] =
∫ x
x fX(t)dt = 0.

Again, it makes no sense to speak of the probability that X will
take on a pre-specified value. This probability is always zero.

10.15. P [X = a] = P [X = b] = 0. Hence,

P [a < X < b] = P [a ≤ X < b] = P [a < X ≤ b] = P [a ≤ X ≤ b]

• The corresponding integrals over an interval are not affected
by whether or not the endpoints are included or excluded.

• When we work with continuous random variables, it is usually
not necessary to be precise about specifying whether or not
a range of numbers includes the endpoints. This is quite dif-
ferent from the situation we encounter with discrete random
variables where it is critical to carefully examine the type of
inequality.

10.16. fX is nonnegative and
∫
R f(x)dx = 1.
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Example 10.17. Random variable X has pdf

fX(x) =

{
ce−2x, x > 0
0, otherwise

Find the constant c and sketch the pdf.

Theorem 10.18. Any nonnegative19 function that integrates to
one is a probability density function (pdf) [7, p. 139].

10.19. Intuition/Interpretation:
The use of the word “density” originated with the analogy to

the distribution of matter in space. In physics, any finite volume,
no matter how small, has a positive mass, but there is no mass at
a single point. A similar description applies to continuous random
variables.

Approximately, for a small ∆x,

P [X ∈ [x, x+ ∆x]] =

∫ x+∆x

x

fX(t)dt ≈ fX(x)∆x.

This is why we call fX the density function.

4.1 Densities and probabilities 139

Definition

We say that X is a continuous random variable if P(X ∈ B) has the form

P(X ∈ B) =
∫

B
f (t)dt :=

∫ ∞

−∞
IB(t) f (t)dt (4.1)

for some integrable function f .a Since P(X ∈ IR) = 1, the function f must integrate to one;

i.e.,
∫ ∞
−∞ f (t)dt = 1. Further, since P(X ∈ B) ≥ 0 for all B, it can be shown that f must be

nonnegative.1 A nonnegative function that integrates to one is called a probability density

function (pdf).

Usually, the set B is an interval such as B = [a,b]. In this case,

P(a ≤ X ≤ b) =
∫ b

a
f (t)dt.

See Figure 4.1(a). Computing such probabilities is analogous to determining the mass of a

piece of wire stretching from a to b by integrating its mass density per unit length from a to

b. Since most probability densities we work with are continuous, for a small interval, say

[x,x+∆x], we have

P(x ≤ X ≤ x+∆x) =
∫ x+∆x

x
f (t)dt ≈ f (x)∆x.

See Figure 4.1(b).

(a) (b)

a b x+x x

Figure 4.1. (a) P(a ≤ X ≤ b) =
∫ b

a f (t)dt is the area of the shaded region under the density f (t). (b) P(x ≤ X ≤
x+∆x) =

∫ x+∆x
x f (t)dt is the area of the shaded vertical strip.

Note that for random variables with a density,

P(a ≤ X ≤ b) = P(a < X ≤ b) = P(a ≤ X < b) = P(a < X < b)

since the corresponding integrals over an interval are not affected by whether or not the

endpoints are included or excluded.

Some common densities

Here are some examples of continuous random variables. A summary of the more com-

mon ones can be found on the inside of the back cover.

aLater, when more than one random variable is involved, we write fX (x) instead of f (x).

Figure 4: P [x ≤ X ≤ x+ ∆x] is the area of the shaded vertical strip.

19or nonnegative a.e.
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In other words, the probability of random variable X taking on
a value in a small interval around point c is approximately equal
to f(c)∆c when ∆c is the length of the interval.

• In fact, fX(x) = lim
∆x→0

P [x<X≤x+∆x]
∆x

• The number fX(x) itself is not a probability. In particular,
it does not have to be between 0 and 1.

• fX(c) is a relative measure for the likelihood that random
variable X will take on a value in the immediate neighborhood
of point c.

Stated differently, the pdf fX(x) expresses how densely the
probability mass of random variable X is smeared out in the
neighborhood of point x. Hence, the name of density function.

10.20. Histogram and pdf [19, p 143 and 145]:

(a) A (probability) histogram is a bar chart that divides the
range of values covered by the samples/measurements into
intervals of the same width, and shows the proportion (rela-
tive frequency) of the samples in each interval.

• To make a histogram, you break up the range of values
covered by the samples into a number of disjoint adjacent
intervals each having the same width, say width ∆. The
height of the bar on each interval [j∆, (j + 1)∆) is taken
such that the area of the bar is equal to the proportion
of the measurements falling in that interval (the propor-
tion of measurements within the interval is divided by the
width of the interval to obtain the height of the bar).

• The total area under the histogram is thus standard-
ized/normalized to one.

(b) If you take sufficiently many independent samples from a con-
tinuous random variable and make the width ∆ of the base
intervals of the probability histogram smaller and smaller, the
graph of the histogram will begin to look more and more like
the pdf.
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(c) Conclusion: A probability density function can be seen as a
“smoothed out” version of a probability histogram
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Figure 5: From histogram to pdf.

10.3 Expectation and Variance

10.21. Expectation : Suppose X is a continuous random variable
with probability density function fX(x).

EX =

∫ ∞
−∞

xfX(x)dx (23)

E [g(X)] =

∫ ∞
−∞

g(x)fX(x)dx (24)

In particular,

E
[
X2
]

=

∫ ∞
−∞

x2fX(x)dx

VarX =

∫ ∞
−∞

(x− EX)2fX(x)dx = E
[
X2
]
− (EX)2.
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Example 10.22. For the random variable generated by the rand()
command in Excel,

10.23. If we compare other characteristics of discrete and continu-
ous random variables, we find that with discrete random variables,
many facts are expressed as sums. With continuous random vari-
ables, the corresponding facts are expressed as integrals.

10.24. Intuition/interpretation: As n → ∞, the average of n
independent samples of X will approach EX.

• This observation is known as the “Law of Large Numbers”.

10.25. All of the properties for the expectation and variance of
discrete random variables also work for continuous random vari-
ables as well:

(a) For c ∈ R, E [c] = c

(b) For c ∈ R, E [X + c] = EX + c and E [cX] = cEX

(c) For constants a, b, we have E [aX + b] = aEX + b.

(d) E [·] is a linear operator: E [aX + bY ] = aEX + bEY .

(i) Homogeneous: E [cX] = cEX
(ii) Additive: E [X + Y ] = EX + EY
(iii) Extension:

• E [
∑n

i=1 ciXi] =
∑n

i=1 ciEXi.
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(e) VarX = E
[
X2
]
− (EX)2

(f) VarX ≥ 0.

(g) VarX ≤ E
[
X2
]
.

(h) Var[aX + b] = a2 VarX.

10.4 Families of Continuous Random Variables

Theorem 10.18 states that any nonnegative function f(x) whose
integral over the interval (−∞,+∞) equals 1 can be regarded as
a probability density function of a random variable. In real-world
applications, however, special mathematical forms naturally show
up. In this section, we introduce a couple families of continuous
random variables that frequently appear in practical applications.
The probability densities of the members of each family all have the
same mathematical form but differ only in one or more parameters.

10.4.1 Uniform Distribution

Definition 10.26. For a uniform random variable on an interval
[a, b], we denote its family by uniform([a, b]) or U([a, b]). Expres-
sions that are synonymous with “X is a uniform random variable”
are “X is uniformly distributed” and “X has a uniform distribu-
tion”.

This family is characterized by

(a) fX (x) =

{
0 x < a, x > b

1
b−a a ≤ x ≤ b

• The random variable X is just as likely to be near any
value in [a, b] as any other value.

(b) FX (x) =

{
0 x < a, x > b
x−a
b−a a ≤ x ≤ b
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84 Probability theory, random variables and random processes�
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�Fig. 3.5 The pdf and cdf for the uniform random variable.
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�Fig. 3.6 The pdf and cdf of a Gaussian random variable.

Gaussian (or normal) random variable This is a continuous random variable that
is described by the following pdf:

fx(x) = 1√
2πσ 2

exp

{
− (x− μ)2

2σ 2

}
, (3.16)

where μ and σ 2 are two parameters whose meaning is described later. It is usually denoted
as N (μ, σ 2). Figure 3.6 shows sketches of the pdf and cdf of a Gaussian random variable.

The Gaussian random variable is the most important and frequently encountered ran-
dom variable in communications. This is because thermal noise, which is the major source
of noise in communication systems, has a Gaussian distribution. Gaussian noise and the
Gaussian pdf are discussed in more depth at the end of this chapter.

The problems explore other pdf models. Some of these arise when a random variable
is passed through a nonlinearity. How to determine the pdf of the random variable in this
case is discussed next.

Funct ions of a random variable A function of a random variable y = g(x) is itself a
random variable. From the definition, the cdf of y can be written as

Fy(y) = P(ω ∈ � : g(x(ω)) ≤ y). (3.17)

Figure 6: The pdf and cdf for the uniform random variable. [14, Fig. 3.5]

Example 10.27 (F2011). Suppose X is uniformly distributed on
the interval (1, 2). (X ∼ U(1, 2).)

(a) Plot the pdf fX(x) of X.

(b) Plot the cdf FX(x) of X.

10.28. The uniform distribution provides a probability model for
selecting a point at random from the interval [a, b].

• Use with caution to model a quantity that is known to vary
randomly between a and b but about which little else is known.

10.4.2 Gaussian Distribution

10.29. This is the most widely used model for the distribution
of a random variable. When you have many independent random
variables, a fundamental result called the central limit theorem
(CLT) (informally) says that the sum of them can be approximated
by normal distribution.

Definition 10.30. Gaussian random variables:

(a) Often called normal random variables because they occur so
frequently in practice
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(b) Denoted by N
(
m,σ2

)
.

(c) N (0, 1) is the standard Gaussian (normal) distribution.

• In Excel, use NORMSINV(RAND()).
In MATLAB, use randn.

(d) fX (x) = 1√
2πσ
e−

1
2(

x−m
σ )

2

.

• In Excel, use NORMDIST(x,m,sigma,FALSE).
In MATLAB, use normpdf(x,m,sigma).

• Figure 9 displays the famous bell-shaped graph of the
Gaussian pdf. This curve is also called the normal curve.

• Advanced calculus is required to prove that the area un-
der the graph is indeed 1.

(e) FX(x) = normcdf(x,m,sigma).

• In Excel, use NORMDIST(x,m,sigma,TRUE).
In MATLAB, use normcdf(x,m,sigma).

• The standard normal cdf is sometimes denoted by Φ(x).
It inherits all properties of cdf. Moreover, note that
Φ(−x) = 1− Φ(x).

• If X is a N (m,σ2) random variable, the CDF of X is

FX(x) = Φ

(
x−m
σ

)
.

• It is impossible to express the integral of a Gaussian PDF
between non-infinite limits as a function that appears on
most scientific calculators.

◦ An old but still popular technique to find integrals of
the Gaussian PDF is to refer to tables that have been
obtained by numerical integration.

∗ One such table is the table that lists Φ(z) for many
values of positive z.
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109 3.5 The Gaussian random variable and process�
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�Fig. 3.14 (a) A sample skeletal muscle (emg) signal, and (b) its histogram and pdf fits.

1 =
[∫ ∞

−∞
fx(x)dx

]2

=
[∫ ∞

−∞
K1e−ax2

dx

]2

= K2
1

∫ ∞

x=−∞
e−ax2

dx
∫ ∞

y=−∞
e−ay2

dy

= K2
1

∫ ∞

x=−∞

∫ ∞

y=−∞
e−a(x2+y2)dxdy. (3.103)

Figure 7: Electrical activity of a skeletal muscle: (a) A sample skeletal muscle
(emg) signal, and (b) its histogram and pdf fits. [14, Fig. 3.14]
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�Fig. 3.15 Plots of the zero-mean Gaussian pdf for different values of standard deviation, σx.

Table 3.1 Influence of σx on different quantities

Range (±kσx) k = 1 k = 2 k = 3 k = 4

P(mx − kσx < x ≤ mx + kσx) 0.683 0.955 0.997 0.999
Error probability 10−3 10−4 10−6 10−8

Distance from the mean 3.09 3.72 4.75 5.61

of the pdf are ignorable. Indeed when communication systems are considered later it is the

presence of these tails that results in bit errors. The probabilities are on the order of 10−3–

10−12, very small, but still significant in terms of system performance. It is of interest to

see how far, in terms of σx, one must be from the mean value to have the different levels of

error probabilities. As shall be seen in later chapters this translates to the required SNR to

achieve a specified bit error probability. This is also shown in Table 3.1.

Having considered the single (or univariate) Gaussian random variable, we turn our

attention to the case of two jointly Gaussian random variables (or the bivariate case). Again

they are described by their joint pdf which, in general, is an exponential whose exponent

is a quadratic in the two variables, i.e., fx,y(x, y) = Ke(ax2+bx+cxy+dy+ey2+f ), where the con-

stants K, a, b, c, d, e, and f are chosen to satisfy the basic properties of a valid joint pdf,

namely being always nonnegative (≥ 0), having unit volume, and also that the marginal

pdfs, fx(x) = ∫∞−∞ fx,y(x, y)dy and fy(y) = ∫∞−∞ fx,y(x, y)dx, are valid. Written in standard

form the joint pdf is

Figure 8: Plots of the zero-mean Gaussian pdf for different values of standard
deviation, σX . [14, Fig. 3.15]
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Figure 9: Probability density function of X ∼ N (µ, σ2) .
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Gaussian (or normal) random variable This is a continuous random variable that
is described by the following pdf:

fx(x) = 1√
2πσ 2

exp

{
− (x− μ)2

2σ 2

}
, (3.16)

where μ and σ 2 are two parameters whose meaning is described later. It is usually denoted
as N (μ, σ 2). Figure 3.6 shows sketches of the pdf and cdf of a Gaussian random variable.

The Gaussian random variable is the most important and frequently encountered ran-
dom variable in communications. This is because thermal noise, which is the major source
of noise in communication systems, has a Gaussian distribution. Gaussian noise and the
Gaussian pdf are discussed in more depth at the end of this chapter.

The problems explore other pdf models. Some of these arise when a random variable
is passed through a nonlinearity. How to determine the pdf of the random variable in this
case is discussed next.

Funct ions of a random variable A function of a random variable y = g(x) is itself a
random variable. From the definition, the cdf of y can be written as

Fy(y) = P(ω ∈ � : g(x(ω)) ≤ y). (3.17)

Figure 10: The pdf and cdf of N (µ, σ2). [14, Fig. 3.6]
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10.31. EX = m and VarX = σ2.

10.32. P [|X − µ| < σ] = 0.6827;
P [|X − µ| > σ] = 0.3173;
P [|X − µ| > 2σ] = 0.0455;
P [|X − µ| < 2σ] = 0.9545

10.33. Relationship between N (0, 1) and N (m,σ2).

(a) An arbitrary Gaussian random variable with mean m and
variance σ2 can be represented as σZ+m, where Z ∼ N (0, 1).

(b) If X ∼ N
(
m,σ2

)
, the random variable

Z =
X −m
σ

is a standard normal random variable. That is, Z ∼ N (0, 1).

• Creating a new random variable by this transformation
is referred to as standardizing.

• It is the key step to calculating a probability for an arbi-
trary normal random variable.

10.4.3 Exponential Distribution

Definition 10.34. The exponential distribution is denoted by
E (λ).

(a) λ > 0 is a parameter of the distribution, often called the rate
parameter.

(b) Characterized by

• fX (x) =

{
λe−λx, x > 0,
0, x ≤ 0

• FX (x) =

{
1− e−λx, x > 0,
0, x ≤ 0
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