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5 Probability Foundations

Constructing the mathematical foundations of probability theory
has proven to be a long-lasting process of trial and error. The
approach consisting of defining probabilities as relative frequencies
in cases of repeatable experiments leads to an unsatisfactory theory.
The frequency view of probability has a long history that goes
back to Aristotle. It was not until 1933 that the great Russian
mathematician A. N. Kolmogorov (1903-1987) laid a satisfactory
mathematical foundation of probability theory. He did this by
taking a number of axioms as his starting point, as had been done
in other fields of mathematics. [20, p 223]

We will try to avoid some technical details in this class. There-
fore, the definition given below is not the “complete” definition.
Some parts are modified or omitted to make the definition easier
to understand.

Definition 5.1. Kolmogorov’s Axioms for Probability [9]:
A probability measure is a real-valued (set) functionE that sat-
isfies

P1 Nonnegativity:
P(A) > 0.

P2 Unit normalization:

P(Q) =1.

1A real-valued set function is a function the maps sets to real numbers.
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P3 Countable additivity or c-additivity: For every countable
sequence (A,) ~, of disjoint events,

() Sr

e The number P (A) is called the probability of the event A

e The entire sample space €2 is called the sure event or the
certain event.

e If an event A satisfies P(A) = 1, we say that A is an almost-
sure event.

e A support of P is any set A for which P (A) = 1.

From the three axioms above, we can derive many more prop-
erties of probability measure. These properties are useful for cal-
culating probabilities.

5.2. P(0)) = 0.

5.3. Finite additivity: If A, ..., A, are disjoint events, then

(08-S0

Special case when n = 2: Addition rule (Additivity)
If AnNB =0, then P(AUB) =P (A) + P(B). (4)

5.4. If A is countable, then

oo

P(A) =) P({a.}).

n=1
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Similarly, if A is finite, then

Al

P(A) =) P({an}).

5.5. Monotonicity: If A C B, then P (A) < P(B)

Example 5.6. Let A be the event to roll a 6 and B the event
to roll an even number. Whenever A occurs, B must also occur.
However, B can occur without A occurring if you roll 2 or 4.

5.7.1f A C B, then P(B\ A) = P (B) — P (A)

5.8. P(A) € ]0,1].

5.9. P(AN B) can not exceed P(A) and P(B). In other words,
“the composition of two events is always less probable than (or at
most equally probable to) each individual event.”

Example 5.10. Let us consider Mrs. Boudreaux and Mrs. Thi-
bodeaux who are chatting over their fence when the new neighbor
walks by. He is a man in his sixties with shabby clothes and a
distinct smell of cheap whiskey. Mrs.B, who has seen him before,
tells Mrs. T that he is a former Louisiana state senator. Mrs. T
finds this very hard to believe. “Yes,” says Mrs.B, “he is a former
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state senator who got into a scandal long ago, had to resign, and
started drinking.” “Oh,” says Mrs. T, “that sounds more likely.”
“No,” says Mrs. B, “I think you mean less likely.”

Strictly speaking, Mrs. B is right. Consider the following two
statements about the shabby man: “He is a former state senator”
and “He is a former state senator who got into a scandal long ago,
had to resign, and started drinking.” It is tempting to think that
the second is more likely because it gives a more exhaustive expla-
nation of the situation at hand. However, this reason is precisely
why it is a less likely statement. Note that whenever somebody
satisfies the second description, he must also satisfy the first but
not vice versa. Thus, the second statement has a lower probability
(from Mrs. Ts subjective point of view; Mrs. B of course knows
who the man is).

This example is a variant of examples presented in the book
Judgment under Uncertainty by Economics Nobel laureate Daniel
Kahneman and co-authors Paul Slovic and Amos Tversky. They
show empirically how people often make similar mistakes when
they are asked to choose the most probable among a set of state-
ments. It certainly helps to know the rules of probability. A more
discomforting aspect is that the more you explain something in
detail, the more likely you are to be wrong. If you want to be
credible, be vague. [15, p 11-12]

5.11. Complement Rule:
P(AY=1-P(A).

e “The probability that something does not occur can be com-
puted as one minus the probability that it does occur.”

e Named “probability’s Trick Number One” in Taking Chances:
Winning with Probability, by British probabilist Haigh.

5.12. P(AUB) = P(A) + P(B) — P(AN B)
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e P(AUB) < P(A) + P(B).

e Approximation: If P(A) > P(B) then we may approximate
P(AUB) by P(A).

Example 5.13. In his bestseller Innumeracy, John Allen Paulos
tells the story of how he once heard a local weatherman claim that
there was a 50% chance of rain on Saturday and a 50% chance of
rain on Sunday and thus a 100% chance of rain during the weekend.
Clearly absurd, but what is the error?

Answer: Faulty use of the addition rule (4))!

If we let A denote the event that it rains on Saturday and B
the event that it rains on Sunday, in order to use P(AU B) =
P(A)+ P(B), we must first confirm that A and B cannot occur at
the same time (P(ANB) = 0). More generally, the formula that is
always holds regardless of whether P(AN B) = 0 is given by .12}

P(AUB) = P(A) + P(B) — P(AN B).

The event “AN B” describes the case in which it rains both days.
To get the probability of rain over the weekend, we now add 50%
and 50%), which gives 100%, but we must then subtract the prob-
ability that it rains both days. Whatever this is, it is certainly
more than 0 so we end up with something less than 100%, just like
common sense tells us that we should.

You may wonder what the weatherman would have said if the
chances of rain had been 75% each day. [15], p 12]

5.14. If a (finite) collection {By, Bs, ..., B,} is a partition of €,
then

P(A) = ip(fm B))

Similarly, if a (countable) collection { By, Bs,...} is a partition
of €2, then

P(A) = ip(,am B))
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5.15. Connection to classical probability theory: Consider an
experiment with finite sample space 2 = {wy,wo, . ..,w,} in which
each outcome w; is equally likely. Note that n = ||

We must have 1
P ({wi}) = - Vi.

Now, given any event A, we can write A as a disjoint union of

A= J{w}.

weA
After applying finite additivity from [5.3] we have

PU)=S PUwh =Y o ==

n
weA weA

singletons:

We can then say that the probability theory we are working on
right now is an extension of the classical probability theory. When
the conditons/assumptions of classical probability theory are met,
then we get back the defining definition of classical classical prob-
ability. The extended part gives us ways to deal with situation
where assumptions of classical probability theory are not satisfied.
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6 Event-based Independence and Conditional
Probability

Example 6.1. Diagnostic Tests.

6.1 Event-based Conditional Probability

Definition 6.2. Conditional Probability: The conditional prob-
ability P(A|B) of event A, given that event B # () occurred, is

given by
P(ANB)

P(B)
e Read “the (conditional) probability of A given B”.

P(A[B) = (5)

e Defined only when P(B) > 0.

o If P(B) = 0, then it is illogical to speak of P(A|B); that is
P(A|B) is not defined.

6.3. Interpretation: Sometimes, we refer to P(A) as
e a priori probability , or
e the prior probability of A, or
e the unconditional probability of A.

It is sometimes useful to interpret P(A) as our knowledge of
the occurrence of event A before the experiment takes place. Con-
ditional probability P(A|B) is the updated probability of the
event A given that we now know that B occurred (but we still do
not know which particular outcome in the set B occurred).

The term a posteriori is often used for P(A|B) when we refer
to P(A) as a priori.

Example 6.4. Roll a fair dice
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Example 6.5. In the diagnostic tests example, we learn whether
we have the disease from test result. Originally, before taking the
test, the probability of having the disease is 0.01%. Being tested
positive from the 99%-accurate test updates the probability of
having the disease to about 1%.

More specifically, let D be the event that the testee has the
disease and Tp be the event that the test returns positive result.

e Before taking the test, the probability of having the disease
is P(D) = 0.01%.

e Using 99%-accurate test means

P(Tp|D) = 0.99 and P(T%|D) = 0.99.

e Our calculation shows that P(D|Tp) = 0.01.

Note also that although the symbol P(A|B) itself is practical, it
phrasing in words can be so unwieldy that in practice, less formal
descriptions are used. For example, we refer to “the probability
that a tested-positive person has the disease” instead of saying
“the conditional probability that a randomly chosen person has the
disease given that the test for this person returns positive result.”

6.6. If the occurrence of B does not give you more information
about A, then
P(A|B) = P(A) (6)

and we say that A and B are independent.

e Meaning: “learning that event B has occurred does not change
the probability that event A occurs.”

e Interpretation: “the occurrence of event A is not contingent
on the occurrence (or nonoccurrence) of event B.”

We will soon define “independence”. Property () can be re-
garded as a “practical” definition for independence. However,
there are some “technical” issues that we need to deal with when
we actually define independence.
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6.7. Similar properties to the three probability axioms:
(a) Nonnegativity: P(A|B) > 0

(b) Unit normalization: P(Q2|B) = 1.
In fact, for any event A such that B C A, we have P(A|B) =
1.

This implies
P(Q|B) = P(B|B) = 1.

(0. ¢]

(c) Countable additivity: For every countable sequence (4,),_;

of disjoint events,

P (G A, B) = iP(An\B).

e In particular, if Ay L Ay, P(A;UAs|B) = P(A1|B) +
P(A;|B)

6.8. Properties:
P(A[Q) = P(A)

If BC Aand P(B) # 0, then P(A|B) = 1.

If ANB =0 and P(B) # 0, then P(A|B) =0

P(A°|B) =1 — P(A|B)
P(

AN B|B) = P(A|B)

P (A, U As|B) = P(A|B) + P(Ay|B) — P(A; N Ay|B).

P(ANB) < P(A|B)
6.9. When () is finite and all outcomes have equal probabilities,

P(ANB) |ANB|/Q |ANB|
P(B)  [Bl/I2] B

P(A[B) =

This formula can be regarded as the classical version of conditional
probability.
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Example 6.10. Someone has rolled a fair die twice. You know
that one of the rolls turned up a face value of six. The probability
that the other roll turned up a six as well is 1= (not ¢). [20,
Example 8.1, p. 244]

Example 6.11. You know that roughly 5% of all used cars have
been flood-damaged and estimate that 80% of such cars will later
develop serious engine problems, whereas only 10% of used cars
that are not flood-damaged develop the same problems. Of course,
no used car dealer worth his salt would let you know whether your
car has been flood damaged, so you must resort to probability
calculations. What is the probability that your car will later run
into trouble?
You might think about this problem in terms of proportions.

If you solved the problem in this way, congratulations. You
have just used the law of total probability.

6.12. Total Probability Theorem: If a (finite or infinitely)
countable collection of events { By, Bo, ...} is a partition of {2, then

P(A) =) P(A|Bi)P(B). (7)
This is a formula for computing the probability of an event that

can occur in different ways.

Example 6.13. The probability that a cell-phone call goes through
depends on which tower handles the call.

The probability of internet packets being dropped depends on
which route they take through the network.
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6.14. Special case:
P(A) = P(A|B)P(B) + P(A|B°)P(B°).

This gives exactly the same calculation as what we discussed in

Example [6.11].

Example 6.15. Diagnostic Tests:
P(Tp)=P(TpN D)+ P(TpnN D)
=P (Tp|D)P (D) + P (Ip|D°) P (D).
= (1 = pre)pp + pre(1 — pp).
6.16. Bayes’ Theorem:

(a) Form 1:

P(B|A) = P(A]B)%.

(b) Form 2: If a (finite or infinitely) countable collection of events
{By, By, ...} is a partition of €, then

P(Br) _ P(A|By)P(By)

e Very simple to derive.

e Extremely useful for making inferences about phenomena that
cannot be observed directly.

e Sometimes, these inferences are described as “reasoning about
causes when we observe effects”.
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Example 6.17. Disease testing:
P(DNTp) _ P(Tp|D)P(D)
P(Tp) P (Tp)
(1 — pre)pp
(1 = pre)pp + pre(l — pp)

P(D|Tp) =

6.18. Probability of compound events
(a) P(AN B) = P(A)P(B|A)

(b) PLANBNC) = P(ANB) x P(C|AN B)

(¢) P(ANBNC) = P(A) x P(B|A) x P(C|AN B)

When we have many sets intersected in the conditioned part, we
often use “,” instead of “N”.

Example 6.19. Most people reason as follows to find the proba-
bility of getting two aces when two cards are selected at random
from an ordinary deck of cards:

(a) The probability of getting an ace on the first card is 4/52.

(b) Given that one ace is gone from the deck, the probability of
getting an ace on the second card is 3/51.

(¢) The desired probability is therefore

4 3
— X —.
02 5l

[20, p 243]

Example 6.20. In the early 1990s, a leading Swedish tabloid
tried to create an uproar with the headline “Your ticket is thrown
away!”. This was in reference to the popular Swedish TV show
“Bingolotto” where people bought lottery tickets and mailed them
to the show. The host then, in live broadcast, drew one ticket from
a large mailbag and announced a winner. Some observant reporter
noticed that the bag contained only a small fraction of the hun-
dreds of thousands tickets that were mailed. Thus the conclusion:
Your ticket has most likely been thrown away!
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Let us solve this quickly. Just to have some numbers, let us
say that there are a total of N = 100,000 tickets and that n =
1,000 of them are chosen at random to be in the final drawing.
If the drawing was from all tickets, your chance to win would
be 1/N = 1/100,000. The way it is actually done, you need to
both survive the first drawing to get your ticket into the bag and
then get your ticket drawn from the bag. The probability to get
your entry into the bag is n/N = 1,000/100,000. The conditional
probability to be drawn from the bag, given that your entry is in
it, is 1/n = 1/1,000. Multiply to get 1/N = 1/100, 000 once more.
There were no riots in the streets. [15, p 22]

6.21. Chain rule of conditional probability [7, p 58|:
P(ANB|B) = P(B|C)P(A|BNC).

Example 6.22. Your teacher tells the class there will be a surprise
exam next week. On one day, Monday-Friday, you will be told in
the morning that an exam is to be given on that day. You quickly
realize that the exam will not be given on Friday; if it was, it would
not be a surprise because it is the last possible day to get the
exam. Thus, Friday is ruled out, which leaves Monday-Thursday.
But then Thursday is impossible also, now having become the last
possible day to get the exam. Thursday is ruled out, but then
Wednesday becomes impossible, then Tuesday, then Monday, and
you conclude: There is no such thing as a surprise exam! But the
teacher decides to give the exam on Tuesday, and come Tuesday
morning, you are surprised indeed.

This problem, which is often also formulated in terms of sur-
prise fire drills or surprise executions, is known by many names, for
example, the “hangman’s paradox” or by serious philosophers as
the “prediction paradox.” To resolve it, let’s treat it as a probabil-
ity problem. Suppose that the day of the exam is chosen randomly
among the five days of the week. Now start a new school week.
What is the probability that you get the test on Monday? Obvi-
ously 1/5 because this is the probability that Monday is chosen.
If the test was not given on Monday. what is the probability that
it is given on Tuesday? The probability that Tuesday is chosen
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to start with is 1/5, but we are now asking for the conditional
probability that the test is given on Tuesday, given that it was not
given on Monday. As there are now four days left, this conditional
probability is 1/4. Similarly, the conditional probabilities that the
test is given on Wednesday, Thursday, and Friday conditioned on
that it has not been given thus far are 1/3, 1/2, and 1, respectively.

We could define the “surprise index” each day as the probability
that the test is not given. On Monday, the surprise index is there-
fore 0.8, on Tuesday it has gone down to 0.75, and it continues to
go down as the week proceeds with no test given. On Friday, the
surprise index is 0, indicating absolute certainty that the test will
be given that day. Thus, it is possible to give a surprise test but
not in a way so that you are equally surprised each day, and it is
never possible to give it so that you are surprised on Friday. [15],

p 23-24]

Example 6.23. Today Bayesian analysis is widely employed through-
out science and industry. For instance, models employed to deter-
mine car insurance rates include a mathematical function describ-
ing, per unit of driving time, your personal probability of having
zero, one, or more accidents. Consider, for our purposes, a sim-
plified model that places everyone in one of two categories: high
risk, which includes drivers who average at least one accident each
year, and low risk, which includes drivers who average less than
one.

If, when you apply for insurance, you have a driving record
that stretches back twenty years without an accident or one that
goes back twenty years with thirty-seven accidents, the insurance
company can be pretty sure which category to place you in. But if
you are a new driver, should you be classified as low risk (a kid who
obeys the speed limit and volunteers to be the designated driver)
or high risk (a kid who races down Main Street swigging from a
half-empty $2 bottle of Boone’s Farm apple wine)?

Since the company has no data on you, it might assign you
an equal prior probability of being in either group, or it might
use what it knows about the general population of new drivers
and start you off by guessing that the chances you are a high risk
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are, say, 1 in 3. In that case the company would model you as a
hybrid-one-third high risk and two-thirds low risk—and charge you
one-third the price it charges high-risk drivers plus two-thirds the
price it charges low-risk drivers.

Then, after a year of observation, the company can employ the
new datum to reevaluate its model, adjust the one-third and two-
third proportions it previously assigned, and recalculate what it
ought to charge. If you have had no accidents, the proportion of
low risk and low price it assigns you will increase; if you have had
two accidents, it will decrease. The precise size of the adjustment
is given by Bayes’s theory. In the same manner the insurance
company can periodically adjust its assessments in later years to
reflect the fact that you were accident-free or that you twice had
an accident while driving the wrong way down a one-way street,
holding a cell phone with your left hand and a doughnut with
your right. That is why insurance companies can give out “good
driver” discounts: the absence of accidents elevates the posterior
probability that a driver belongs in a low-risk group. [11, p 111-
112]
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