Recall that the confidence level of the interval estimate with limits

$$
\bar{x} \pm z_{\alpha / 2} \frac{\Delta}{\sqrt{n}}
$$

is given by $100(1-\alpha) \%$
So, for parts (a)-(c), we first grab the values of $z_{\alpha / 2}$ from the given interval.

Note from the figure above that $\Phi\left(z_{\alpha / 2}\right)=1-\frac{a}{2}$.
Therefore, we can use the Φ table to find $1-\frac{\alpha}{2}$ and the value of α.

For parts $(d)-(f)$, we are given the confidence levols which are the same as $100(1-\alpha) \%$.

Therefore, we can calculate the values of $1-\frac{\alpha}{2}$ via

$$
\begin{aligned}
100(1-\alpha) \% & =C L \% \\
1-\alpha & =\frac{C L}{100} \\
\alpha & =1-\frac{C L}{100} \\
\frac{\alpha}{2} & =\frac{1}{2}\left(1-\frac{C L}{100}\right)
\end{aligned}
$$

$$
1-\frac{\alpha}{2}=1-\frac{1}{2}+\frac{C L}{100}=\frac{1}{2}+\frac{1}{2} \frac{C L}{100}
$$

Finally, we can use the Φ table to map the values of $1-\frac{\alpha}{2}$ to the correspoinding values of $z_{\alpha / 2}$.

HW7 Page 2

From cond:dence level (CL), we can get 1- $\frac{\alpha}{2}$ from

$$
\frac{1}{2}+\frac{1}{2} \frac{C L}{100}
$$

For $\quad 95 \% C L, \quad 1-\frac{\alpha}{2}=0.975$.

$$
90 \% C L, \quad 1-\frac{\alpha}{2}=0.995 .
$$

From 1- $\frac{\alpha}{2}$, we then use the Φ table to find $z_{\alpha / 2}$. the value of z at which $\Phi(z)=1-\frac{\alpha}{2}$

$$
\begin{aligned}
& C L \xrightarrow{\star} 1-\frac{\alpha}{2} \xrightarrow{\Phi \text { table }} z_{\alpha / 2} \\
& 95 \% \quad 0.975 \\
& 90 \% \quad 2.58
\end{aligned}
$$

The confidence interval is given by

$$
\left.\begin{array}{l}
{[l, u] \text { where } l=\bar{x}-z_{\alpha / 2} \frac{\Delta}{\sqrt{n}}} \\
u=\bar{x}+z_{\alpha / 2} \frac{\Delta}{\sqrt{n}}
\end{array}\right)
$$

Here, $\Delta=20$ and $\bar{x}=1000$.
(e) $n \uparrow \Rightarrow$ length \downarrow (narionere)

$$
\text { CL } \uparrow \Rightarrow \text { length } \uparrow \text { (wider })!
$$

(f) and (g)

(b)	(b)	99%	2.58	10	983.7	1016.3

(e) $n \uparrow \Rightarrow$ length \downarrow (narioner)

$$
C L \uparrow \Rightarrow \text { length } \uparrow \text { (wider) }!
$$

(f) and (g)

The length of the CI lis given by $2 z_{\alpha / 2} \frac{b}{\sqrt{n}}$
If we want the length' toll be w, then we need

if we went the maximum value of n such that the width does not fall below 40 .
(a)

From $n=11$ measured temperature, we can calculate \bar{x} by

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}=13.77
$$

It is given that $\Delta=0.5$.
we want $C L=99 \% \Rightarrow 1-\frac{\alpha}{2}=\frac{1}{2}\left(1+\frac{C L}{100}\right)=0.995$

$$
\Rightarrow z_{a / 2}=2.58
$$

The confidence interval is given by

$$
[\ell, \mu] \text { where } \begin{aligned}
l & =\bar{x}-z_{a / 2} \frac{\Delta}{\sqrt{n}}=13.38 \\
u & =\bar{x}+z_{\alpha / 2} \frac{\Delta}{\sqrt{n}}
\end{aligned}=14.16
$$

So, $\quad 13.38 \leqslant \mu \leqslant 14.16$.
(b)

The length of the $C I$ is given by $2 z_{\alpha / 2} \frac{b}{\sqrt{n}}$
\swarrow here, $\omega=40$
If we want the length to be w, then we need

$$
\begin{aligned}
2 z_{\alpha / 2} \frac{\Delta}{\sqrt{n}} & =w \\
\Rightarrow \quad n & =\left(2 z_{a / 2} \frac{b}{\omega}\right)^{2}
\end{aligned}
$$

At 95% CL, $Z_{\alpha / 2}=1.96 \Rightarrow n=1.707 \rightarrow 2$

Q4-Q6
Monday, March 26, 2012
9:02 PM
Q4

$$
C L=100(1-\alpha) \Rightarrow a=1-\frac{C L}{100} \Rightarrow \frac{\alpha}{2}=\frac{1}{2}\left(1-\frac{C L}{100}\right) \nRightarrow
$$

Q5

$$
\left.\begin{array}{l}
95 \% C L \xrightarrow{A} \frac{a}{2}=0.025 \\
n=16 \longrightarrow d f=n-1=15
\end{array}\right\} \xrightarrow{t \text { table } t_{\alpha / 2, n-1}=2.131} \begin{aligned}
& \text { ae }=60,139.7 \text { and } s=3,645.94
\end{aligned}
$$

The confidence interval is given by $[\ell, u]$
where $\quad l=\bar{x}-t_{\alpha / 2, n-1} \frac{\partial}{\sqrt{n}}=58,197.3$

$$
u=\bar{\infty}+t_{a / 2, n-1} \frac{s}{\sqrt{n}}=62,082.1
$$

Q6
From the sample, $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \approx 231.67$

$$
\left.\begin{array}{rl}
90 \% C L & \xrightarrow{\infty} \frac{a}{2}=0.05 \\
n=5 & d f=n-1=4
\end{array}\right\} \xrightarrow{t \text { table }} t_{a / 2, n-1}=2.132
$$

The confidence interval is given by $[\ell, u]$ where $\quad l=\bar{\sigma}-t_{\alpha / 2, n-1} \frac{D}{\sqrt{n}}=230.2$

$$
u=\bar{\infty}+t_{a / 2, n-1} \frac{\delta}{\sqrt{n}}=233.1
$$

For known $<, \bar{x} \sim N\left(\mu, \frac{c^{2}}{n}\right)$
To find type I error, assume $1 t_{0}$ is true
$S_{0}, \mu=\mu_{0}=100$.
Hence, $\bar{x} \sim N\left(\mu_{0}, \frac{\Delta^{2}}{r}\right)$
(a)

$$
\begin{aligned}
\alpha & =p[\bar{x} \notin \text { acceptance region }]=1-p\left[98.5 \leqslant \bar{x}_{101.5}\right] \\
& =1-P[\underbrace{\frac{98.5-100}{\Delta / \sqrt{n}}}_{-2.25} \leqslant \frac{\bar{x}-100}{\Delta / \sqrt{n}} \leqslant \underbrace{\frac{101.5-100}{\Delta / \sqrt{n}}}_{2.25}]
\end{aligned}
$$

$$
=1-(\Phi(2.25)-\Phi(-2.25))
$$

$$
=1-(\Phi(2.25)-(1-\Phi(2.25)))
$$

$$
=1-(2 \Phi(2.25)-1)=2(1-\Phi(2.25))
$$

$$
=0.02448
$$

(b) When $n=5$,

$$
\frac{101.5-100}{\Delta / \sqrt{5}}
$$

$$
\alpha=2(1-\Phi(1.68))=0.09296
$$

(c) Test statistic: $z_{0}=\frac{\bar{x}-\mu_{0}}{G / \sqrt{n}}$
acceptance region: $-z_{\alpha / 2} \leqslant \frac{\bar{x}-\mu_{0}}{\Delta / \sqrt{n}} \leqslant z_{\alpha / 2}$

(d) To find β, the probability of type $\mathbb{4}$ error, we assume that $\mu=103$.

Again $\bar{x} \sim \mathcal{N}\left(\mu, \Delta^{2} / n\right)$

$$
\begin{aligned}
\beta & =p[\bar{x} \in \text { acceptance region }] \\
& =p[l \leqslant \bar{x} \leqslant \mu] \\
& =p\left[\frac{l-\mu}{\Delta / \sqrt{n}} \leq \frac{\bar{x}-\mu}{\Delta / \sqrt{n}} \leqslant \frac{\mu-\mu}{L / \sqrt{n}}\right] \\
& =\Phi\left(\frac{\mu-\mu}{\Delta / \sqrt{n}}\right)-\Phi\left(\frac{l-\mu}{\sigma / \sqrt{n}}\right)
\end{aligned}
$$

(e) same $n: \alpha \uparrow \Rightarrow \beta \downarrow$
same $\alpha: n \uparrow \Rightarrow \beta \downarrow$
(f) Recall that $p=2\left(1-\Phi| | z_{0} \mid\right)$

(a)

$$
a=0.05 \Rightarrow z_{\alpha / 2}=1.96
$$

(We have seen the $z_{\alpha / 2}$ for $\alpha=0.05$ many times.)
$z_{0}=\frac{\bar{x}-\mu_{0}}{\alpha / \sqrt{n}}=\frac{2.78-3}{0.9 / \sqrt{15}}=-0.9467$
íBecause $-0.9467 \in\left[-z_{\alpha / 2}, z_{\alpha / 2}\right]$, we fail to reject H_{0}.

C There is not enough evidence to support the claim that the mean differs from 3 at $\alpha=0.05$)
(b) $P=2(1-\Phi(12.1))=0.3438$
(Again, because $\alpha<P$, we fail to reject H_{0}.)
(C) If the true mean is $\mu=3.25$, then

$$
\bar{x} \sim \mathbb{M}\left(\mu, \frac{\Delta}{n}^{2}\right)
$$

The test statistic is $z_{0}=\frac{\bar{x}-\mu_{0}}{\alpha / \sqrt{n}}$

Power of the test $=1-\beta=$ the probability of correctly $\underbrace{\text { rejecting }} H_{0}$

$$
z_{0} \text { is outside }\left[-z_{\alpha / 2}, z_{\alpha / 2}\right]
$$

$$
\begin{aligned}
& =1-P\left[z_{0} \in\left[-z_{\alpha / 2}, z_{\alpha / 2}\right]\right] \\
& =1-p\left[-z_{\alpha / 2} \leqslant \frac{\bar{x}-\mu_{0}}{\overline{\alpha / \sqrt{n}}} \leqslant z_{\alpha / 2}\right] \\
& =1-p\left[\mu_{0}-z_{a / 2} \frac{b}{\sqrt{n}} \leqslant \bar{x} \leqslant \mu_{0}+z_{\alpha / 2} \frac{\Delta}{\sqrt{n}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =1-(\underbrace{\Phi(0.88)-\Phi(-3.04)}_{\beta=0.8094})=0.1906
\end{aligned}
$$

Q9
Critical values $= \pm t_{\alpha / 2, n-1}$

α	$\alpha / 2$	$n-1$	$\pm t_{d / 2, n-1}$
0.01	0.005	19	± 2.861
0.05	0.025	11	± 2.201
0.10	0.05	14	± 1.761

Q10
This is the value of α in the t table

$$
p=2(\overbrace{1-\left(F_{T_{n-1}}\left(\left|t_{0}\right|\right)\right.}) \text { where } t_{a / 2, n-1}=t_{0}
$$

9
instead of using Φ, which is the $c d f$ of
here, we need to use the edt of T_{n-1}
Here, $d f=n-1$. So, we look at the row with $d f=n-1$ in the t table.
Usually, we will not be able to find the value of t that is exactly the same as \mid fol in the row. So, we will take the nearest t 's (one $\langle | t_{0} \mid$ and another $>\left|t_{0}\right|$). These two t values then gives two values $\rho f \alpha$ which bound $1-F_{T_{n-1}}$ (I tel)

We then conclude

	t_{0}	$\left\|t_{0}\right\|$
(a)	2.05	2.05
(b)	-1.84	1.8
(c)	0.4	0.4

(a) $2.05 \quad 2.05$
1.8
1.729
0.257
0.688
0.40
$0.25 \Rightarrow 0.5<P<0.8$

Remark: With MATLAB, the values of P can be calculated. They are $0.0544,0.0814,0.6936$, respectively.
Q11

$H_{1}: \mu \neq 300$
From the sample, we calculate $\bar{x}=325.4963$

From the sample, we calculate

$$
\begin{aligned}
& \bar{x}=325.4963 \\
& A=198.7855
\end{aligned}
$$

$$
t_{0}=\frac{\bar{x}-\mu_{0}}{\Delta / \sqrt{n}}=0.6665
$$

With $a=0.05$, the critical values are $\pm t_{\alpha / 2, n-1}= \pm 2.056$ Because $t_{0} \in[-2.056,+2.056]$, we fail to reject H_{0}.

Recall the simple linear regression model:

$$
Y=\beta_{0}+\beta_{1} x+\varepsilon
$$

(a)

The least squares estimates of the slope $\left(\hat{\beta}_{1}\right)$ and the intercept $\left(\hat{\beta}_{0}\right)$
are given by

$$
\begin{aligned}
& \text { given by } \\
& \hat{\beta}_{1}=\frac{\frac{\overline{\alpha y}}{}-(\bar{a} \bar{y})}{\overline{x^{2}}-(\bar{x})^{2}}=\frac{\sum_{i=1}^{n} \alpha_{i} y_{i}-\sum_{i=1}^{n} \alpha_{i} \sum_{i=1}^{n} y_{i}}{\sum_{i=1}^{n} \alpha_{i}^{2}-\left(\frac{\left.\sum_{i=1}^{n} \alpha_{i}\right)^{2}}{n}\right.} \approx-2.3298 \\
& \hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}=\frac{1}{n}\left(\sum_{i=1}^{n} y_{i}-\hat{\beta}_{1} \sum_{i=1}^{n} \alpha_{i}\right) \approx 48.013
\end{aligned}
$$

(b)

$$
\left\{\begin{array}{l}
\hat{\Delta}^{2}=\frac{S S_{E}}{n-2} \quad \underbrace{}_{i=1} \sum_{i}^{n} \alpha_{i} y_{i}-1 \sum_{n=1}^{n} \sigma_{i} \sum_{i=1}^{n} y_{i}=-59.0571 \\
S S_{E}=\underbrace{S_{i y}}_{Y_{y y}} \hat{\beta}_{1} S_{\alpha y} \approx 22.1299 \\
\sum_{i=1}^{n} y_{i}^{2}-\frac{\left(\sum_{i=1}^{n} y_{i}\right)^{2}}{n}=159.7143 \\
\hat{\Delta}^{2}=\frac{S S_{E}}{n-2} \approx 1.8436
\end{array}\right.
$$

Fitted line: $\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{0}$ oe
(c) with or $=4.3, \quad \hat{y} \approx 37.9948$
(d) with or $=3.7, \quad \hat{y} \approx 39.39272$
(e) Residual $=e=y-\hat{y}=46.1-39.3927=6.7073$

