Problem 1. The input X nd outpu Y fa a system subject to random perturbations are described probabilistically by the following joint mf matrix:

Problem 2. Suppose you make 13 pairs of observations:

x	y
1	14.1338
4	32.3236
1	5.9754
5	35.785
7	52.4688
6	49.5751
10	77.6489
2	13.5761
6	49.7059
3	28.5717
7	51.8538
3	27.0028
4	27.4189

Let's denote these pairs of values by $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{13}, y_{13}\right)$. You want to report the relationship between the x and the y by a linear (affine) expression $y=a x+b$. Find the values of a and b that minimize

$$
a^{*} \approx 7.44
$$

$$
b^{*} \approx 2.08
$$

