
IES 302: Engineering Statistics 2011/2

HW 4 — Not Due

Lecturer: Prapun Suksompong, Ph.D.

Problem 1. The random variable V has pmf

pV (v) =

{
cv2, v = 1, 2, 3, 4,
0, otherwise.

(a) Find the value of the constant c.

(b) Find P [V ∈ {u2 : u = 1, 2, 3, . . .}].

(c) Find the probability that V is an even number.

(d) Find P [V > 2].

(e) Sketch pV (v).

(f) Sketch FV (v).

Problem 2. An optical inspection system is to distinguish among different part types.
The probability of a correct classification of any part is 0.98. Suppose that three parts are
inspected and that the classifications are independent.

(a) Let the random variable X denote the number of parts that are correctly classified.
Determine the probability mass function of X. [Montgomery and Runger, 2010, Q3-20]

(b) Let the random variable Y denote the number of parts that are incorrectly classified.
Determine the probability mass function of Y .

Problem 3. The thickness of the wood paneling (in inches) that a customer orders is a
random variable with the following cdf:

FX(x) =


0, x < 1

8

0.2, 1
8
≤ x < 1

4

0.9, 1
4
≤ x < 3

8

1 x ≥ 3
8

Determine the following probabilities:

(a) P [X ≤ 1/18]
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(b) P [X ≤ 1/4]

(c) P [X ≤ 5/16]

(d) P [X > 1/4]

(e) P [X ≤ 1/2]

[Montgomery and Runger, 2010, Q3-42]

Problem 4. Plot the Poisson pmf for α = 10, 30, and 50.

Problem 5. Let X ∼ P(α).

(a) Evaluate P [X > 1]. Your answer should be in terms of α.

(b) Compute the numerical value of P [X > 1] when α = 1.

Problem 6. When n is large, binomial distribution Binomial(n, p) becomes difficult to
compute directly because of the need to calculate factorial terms. In this question, we
will consider an approximation when p is close to 0. In such case, the binomial can be
approximated by the Poisson distribution with parameter α = np.

More specifically, suppose Xn has a binomial distribution with parameters n and pn. If
pn → 0 and npn → α as n→∞, then

P [Xn = k]→ e−α
αk

k!
.

(a) Let X ∼ Binomial(12, 1/36). (For example, roll two dice 12 times and let X be the
number of times a double 6 appears.) Evaluate pX(x) for x = 0, 1, 2.

(b) Compare your answers in the previous part with the Poisson approximation.

(c) Compare the plot of pX(x) and P(np).

Problem 7. In one of the New York state lottery games, a number is chosen at random
between 0 and 999. Suppose you play this game 250 times. Use the Poisson approximation
to estimate the probability that you will never win and compare this with the exact answer.

Problem 8. Suppose X is a random variable whose pmf at x = 0, 1, 2, 3, 4 is given by
pX(x) = 2x+1

25
. Determine its expected value and variance. [Montgomery and Runger, 2010,

Q3-51]
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and they can be considered to be independent for mutation.
Determine the following probabilities. The binomial table in
Appendix A can help.
(a) No samples are mutated.
(b) At most one sample is mutated.
(c) More than half the samples are mutated.

3-89. An article in Information Security Technical Report
[“Malicious Software—Past, Present and Future” (2004, Vol. 9,
pp. 6–18)] provided the following data on the top ten mali-
cious software instances for 2002. The clear leader in the num-
ber of registered incidences for the year 2002 was the Internet
worm “Klez,” and it is still one of the most widespread threats.
This virus was first detected on 26 October 2001, and it has
held the top spot among malicious software for the longest 
period in the history of virology.

Place Name % Instances

1 I-Worm.Klez 61.22%

2 I-Worm.Lentin 20.52%

3 I-Worm.Tanatos 2.09%

4 I-Worm.BadtransII 1.31%

5 Macro.Word97.Thus 1.19%

6 I-Worm.Hybris 0.60%

7 I-Worm.Bridex 0.32%

8 I-Worm.Magistr 0.30%

9 Win95.CIH 0.27%

10 I-Worm.Sircam 0.24%

The 10 most widespread malicious programs for 2002
(Source—Kaspersky Labs).

Suppose that 20 malicious software instances are reported.
Assume that the malicious sources can be assumed to be inde-
pendent.
(a) What is the probability that at least one instance is “Klez”?
(b) What is the probability that three or more instances are

“Klez”?
(c) What are the mean and standard deviation of the number

of “Klez” instances among the 20 reported?

3-90. Heart failure is due to either natural occurrences
(87%) or outside factors (13%). Outside factors are related to
induced substances or foreign objects. Natural occurrences are
caused by arterial blockage, disease, and infection. Suppose
that 20 patients will visit an emergency room with heart failure.
Assume that causes of heart failure between individuals are 
independent.
(a) What is the probability that three individuals have condi-

tions caused by outside factors?
(b) What is the probability that three or more individuals have

conditions caused by outside factors?
(c) What are the mean and standard deviation of the number

of individuals with conditions caused by outside factors?

3-91. A computer system uses passwords that are exactly
six characters and each character is one of the 26 letters (a–z)
or 10 integers (0–9). Suppose there are 10,000 users of the
system with unique passwords. A hacker randomly selects
(with replacement) one billion passwords from the potential
set, and a match to a user’s password is called a hit.
(a) What is the distribution of the number of hits?
(b) What is the probability of no hits?
(c) What are the mean and variance of the number of hits?

3-92. A statistical process control chart example. Samples
of 20 parts from a metal punching process are selected every
hour. Typically, 1% of the parts require rework. Let X denote
the number of parts in the sample of 20 that require rework. A
process problem is suspected if X exceeds its mean by more
than three standard deviations.
(a) If the percentage of parts that require rework remains at

1%, what is the probability that X exceeds its mean by
more than three standard deviations?

(b) If the rework percentage increases to 4%, what is the
probability that X exceeds 1?

(c) If the rework percentage increases to 4%, what is the
probability that X exceeds 1 in at least one of the next five
hours of samples?

3-93. Because not all airline passengers show up for their
reserved seat, an airline sells 125 tickets for a flight that holds
only 120 passengers. The probability that a passenger does not
show up is 0.10, and the passengers behave independently.
(a) What is the probability that every passenger who shows

up can take the flight?
(b) What is the probability that the flight departs with empty

seats?

3-94. This exercise illustrates that poor quality can affect
schedules and costs. A manufacturing process has 100 customer
orders to fill. Each order requires one component part that is
purchased from a supplier. However, typically, 2% of the com-
ponents are identified as defective, and the components can be
assumed to be independent.
(a) If the manufacturer stocks 100 components, what is the

probability that the 100 orders can be filled without
reordering components?

(b) If the manufacturer stocks 102 components, what is the
probability that the 100 orders can be filled without
reordering components?

(c) If the manufacturer stocks 105 components, what is the
probability that the 100 orders can be filled without
reordering components?

3-95. Consider the lengths of stay at a hospital’s emergency
department in Exercise 3-29. Assume that five persons inde-
pendently arrive for service.
(a) What is the probability that the length of stay of exactly

one person is less than or equal to 4 hours?
(b) What is the probability that exactly two people wait more

than 4 hours?
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Figure 4.1: The 10 most widespread malicious programs for 2002 (Source—Kaspersky Labs).

Problem 9. An article in Information Security Technical Report [“Malicious Software—
Past, Present and Future” (2004, Vol. 9, pp. 618)] provided the data (shown in Figure 4.1)
on the top ten malicious software instances for 2002. The clear leader in the number of
registered incidences for the year 2002 was the Internet worm “Klez”. This virus was first
detected on 26 October 2001, and it has held the top spot among malicious software for the
longest period in the history of virology.

Suppose that 20 malicious software instances are reported. Assume that the malicious
sources can be assumed to be inde- pendent.

(a) What is the probability that at least one instance is “Klez”?

(b) What is the probability that three or more instances are “Klez”?

(c) What are the expected value and standard deviation of the number of “Klez” instances
among the 20 reported?

Problem 10. The random variable V has pmf

pV (v) =

{
1
v2

+ c, v ∈ {−2, 2, 3}
0, otherwise.

(a) Find the value of the constant c.

(b) Find P [V > 3].

(c) Find P [V < 3].

(d) Find P [V 2 > 1].
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(e) Let W = V 2 − V + 1. Find the pmf of W .

(f) Find EV

(g) Find E [V 2]

(h) Find VarV

(i) Find σV

(j) Find EW
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