IES 302: Engineering Statistics 2011/2

HW 3 - Due: February 15

Lecturer: Prapun Suksompong, Ph.D.

Instructions

(a) ONE part of a question will be graded (5 pt). Of course, you do not know which part will be selected; so you should work on all of them.
(b) It is important that you try to solve all problems. (5 pt)
(c) Late submission will be heavily penalized.
(d) Write down all the steps that you have done to obtain your answers. You may not get full credit even when your answer is correct without showing how you get your answer.

Problem 1. Suppose that for the general population, 1 in 5000 people carries the human immunodeficiency virus (HIV). A test for the presence of HIV yields either a positive (+) or negative (-) response. Suppose the test gives the correct answer 99% of the time.
(a) What is $P(-\mid H)$, the conditional probability that a person tests negative given that the person does have the HIV virus?
(b) What is $P(H \mid+)$, the conditional probability that a randomly chosen person has the HIV virus given that the person tests positive?

Problem 2.

(a) Suppose that $P(A \mid B)=1 / 3$ and $P\left(A \mid B^{c}\right)=1 / 4$. Find the range of the possible values for $P(A)$.
(b) Suppose that C_{1}, C_{2}, and C_{3} partition Ω. Furthermore, suppose we know that $P\left(A \mid C_{1}\right)=$ $1 / 3, P\left(A \mid C_{2}\right)=1 / 4$ and $P\left(A \mid C_{3}\right)=1 / 5$. Find the range of the possible values for $P(A)$.

Problem 3. A Web ad can be designed from four different colors, three font types, five font sizes, three images, and five text phrases. A specific design is randomly generated by the Web server when you visit the site. Let A denote the event that the design color is red and let B denote the event that the font size is not the smallest one. Calculate the following probabilities.
(a) $P(A \cup B)$
(b) $P\left(A \cup B^{c}\right)$
(c) $P\left(A^{c} \cup B^{c}\right)$
[Montgomery and Runger, 2010, Q2-84]
Problem 4. Anne and Betty go fishing. Find the conditional probability that Anne catches no fish given that at least one of them catches no fish. Assume they catch fish independently and that each has probability $0<p<1$ of catching no fish. [Gubner, 2006, Q2.62]

Problem 5. In this question, each experiment has equiprobable outcomes.
(a) Let $\Omega=\{1,2,3,4\}, A_{1}=\{1,2\}, A_{2}=\{1,3\}, A_{3}=\{2,3\}$.
(i) Determine whether $P\left(A_{i} \cap A_{j}\right)=P\left(A_{i}\right) P\left(A_{j}\right)$ for all $i \neq j$.
(ii) Check whether $P\left(A_{1} \cap A_{2} \cap A_{3}\right)=P\left(A_{1}\right) P\left(A_{2}\right) P\left(A_{3}\right)$.
(iii) Are A_{1}, A_{2}, and A_{3} independent?
(b) Let $\Omega=\{1,2,3,4,5,6\}, A_{1}=\{1,2,3,4\}, A_{2}=A_{3}=\{4,5,6\}$.
(i) Check whether $P\left(A_{1} \cap A_{2} \cap A_{3}\right)=P\left(A_{1}\right) P\left(A_{2}\right) P\left(A_{3}\right)$.
(ii) Check whether $P\left(A_{i} \cap A_{j}\right)=P\left(A_{i}\right) P\left(A_{j}\right)$ for all $i \neq j$.
(iii) Are A_{1}, A_{2}, and A_{3} independent?

Problem 6. A certain binary communication system has a bit-error rate of 0.1; i.e., in transmitting a single bit, the probability of receiving the bit in error is 0.1 . To transmit messages, a three-bit repetition code is used. In other words, to send the message 1,111 is transmitted, and to send the message 0,000 is transmitted. At the receiver, if two or more 1 s are received, the decoder decides that message 1 was sent; otherwise, i.e., if two or more zeros are received, it decides that message 0 was sent.

Assuming bit errors occur independently, find the probability that the decoder puts out the wrong message.
[Gubner, 2006, Q2.62]
Problem 7. In an experiment, A, B, C, and D are events with probabilities $P(A \cup B)=\frac{5}{8}$, $P(A)=\frac{3}{8}, P(C \cap D)=\frac{1}{3}$, and $P(C)=\frac{1}{2}$. Furthermore, A and B are disjoint, while C and D are independent.
(a) Find
(i) $P(A \cap B)$
(ii) $P(B)$
(iii) $P\left(A \cap B^{c}\right)$
(iv) $P\left(A \cup B^{c}\right)$
(b) Are A and B independent?
(c) Find
(i) $P(D)$
(ii) $P\left(C \cap D^{c}\right)$
(iii) $P\left(C^{c} \cap D^{c}\right)$
(iv) $P(C \mid D)$
(v) $P(C \cup D)$
(vi) $P\left(C \cup D^{c}\right)$
(d) Are C and D^{c} independent?

Problem 8. Consider the sample space $\Omega=\{-2,-1,0,1,2,3,4\}$. For an event $A \subset \Omega$, suppose that $P(A)=|A| /|\Omega|$. Define the random variable $X(\omega)=\omega^{2}$. Find the probability mass function of X.

Problem 9. Suppose X is a random variable whose pmf at $x=0,1,2,3,4$ is given by $p_{X}(x)=\frac{2 x+1}{25}$.

Remark: Note that the statement above does not specify the value of the $p_{X}(x)$ at the value of x that is not $0,1,2,3$, or 4 .
(a) What is $p_{X}(5)$?
(b) Determine the following probabilities:
(i) $P[X=4]$
(ii) $P[X \leq 1]$
(iii) $P[2 \leq X<4]$
(iv) $P[X>-10]$

