Sirindhorn International Institute of Technology Thammasat University at Rangsit

School of Information, Computer and Communication Technology

ET601: Problem Set 2 Solution

1. Here is a new script for the probability calculation part:
```
%% Probability Calculation
Dice_Support = 1:6;
% Part a
S = zeros(1, 6^Number_Dice); % Preallocation
for k1 = Dice_Support
    for k2 = Dice_Support
        S(6* (k1-1) +k2) = k1+k2;
    end
end
S
% Part a (another solution)
S = zeros(1, 6^Number_Dice); % Preallocation
k = 1;
for k1 = Dice_Support
    for k2 = Dice Support
        S(k) = k1+k2;
        k = k+1;
        end
end
S
% Part b
SS = zeros (6,6); % Preallocation
for k1 = Dice_Support
    for k2 = Dice_Support
        SS(k1,k2) = k1+k2;
    end
end
SS
Size_SampleSpace = length(S);
Number_11 = sum(S==11)
Number 12 = sum(S==12)
% Count all possible cases at once
N_S = hist(S,S_Support)
P = sym(N_S)/Size_SampleSpace
figure
stem(S_Support,P)
```

The codes is verified by the displayed results in the command window:

$\mathrm{S}=$														
Columns 1 through 15														
2	3	4	5	6	7	3	4	5	6	7	8	4	5	6
Columns	16	ug												
7	8	9	5	6	7	8	9	10	6	7	8	9	10	11
Columns	31	ug												
7	8	9	10	11	12									
SS $=$														
2	3	4	5	6	7									
3	4	5	6	7	8									
4	5	6	7	8	9									
5	6	7	8	9	10									
6	7	8	9	10	11									
7	8	9	10	11	12									

2. See the script SumofThreeDice.m provided below.
```
close all; clear all;
% Part (a)
N = 1e3;
D = randi ([1, 6], 3,N);
% Part (b)
S = sum(D);
% Part (c)
RF9 = cumsum(S==9)./(1:N);
plot(1:N,RF9)
xlabel('Number of Rolls')
ylabel('Relative Frequency')
grid on
% Part (d)
RF10 = cumsum(S==10)./(1:N);
hold on
plot(1:N,RF10,'r')
legend('Sum = 9', 'Sum = 10')
% Part (e)
figure
hist(S, 3:18)
```

```
N_S_Sim = hist(S,3:18);
title('Histogram')
xlabel('sum of three dice')
% Part (f): Probability Calculation
range = 1:6;
S = [];
for k1 = range
        for k2 = range
            for k3 = range
                    S = [S (k1+k2+k3)];
            end
        end
end
Size_SampleSpace = length(S);
N_S = hist(S, 3:18);
P = sym(N_S/Size_SampleSpace)
% Part (g)
figure
stem(3:18,P)
hold on
RF = N_S_Sim./N;
plot(3:1咅,RF,'rx')
legend('probability','relative frequency')
xlabel('sum of three dice')
grid on
```

The command window displays the probabilities involved with the sum of three dice. The nth number in the results give the probability that the sum is n.

```
>> SumofThreeDice
\(\mathrm{P}=\)
[ 1/216, 1/72, \(1 / 36,5 / 108,5 / 72,7 / 72,25 / 216,1 / 8,1 / 8\),
\(25 / 216,7 / 72,5 / 72,5 / 108,1 / 36,1 / 72,1 / 216]\)
```

The corresponding three figures generated in parts (c,d), (e), and (g) are shown below.

3. See the script below. The script from HW1 is also included.

```
% HW1Q2
% Part (a)
x = 1:7
% Part (b)
y = cumsum(x)
% Part (c)
y = x.* (x+1)/2
% HW2Q3
n = 7; % The length of vector x.
z = zeros(1,7); % Preallocation
z(1) = x(1);
for k = 2:n
    z(k) = z(k-1) +x(k);
end
Z
```

The results are verified in the command window:

$y=$							
	1	3	6	10	15	21	28
$z=$							
	1	3	6	10	15	21	28

4. See the script below. Note that two solutions are provided. The first one uses multidimensional array. The second one uses for loop.
```
close all; clear all;
tic
N = 1e3;
% A: At least one six in 4 tosses of a fair dice
p = cumsum((sum((randi(6,N,4) == 6),2) >= 1))./(1:N)';
plot(1:N,p)
hold on
xlabel('number of rolls')
ylabel('relative frequency')
% B: At least one double six in 24 tosses of a pair of dice
plot(1:N,p,'r')
% Technique 1 - multidimensional array
p = (sum(sum(randi (6,2,24,N)==6,1)==2,2)>=1);
p = reshape(p,1,prod(size(p)));
p = cumsum(p) ./(1:N);
% % Technique 2 - for loop
% c = zeros(1,N);
% for k= 1:N
% s = (sum((sum(randi}(6,2,24)==6,1)==2))>=1)
% if k==1
% c(k) = s;
% else
% c(k) = c(k-1)+s;
    end
% end
% plot(1:N,C./(1:N),'r')
% %
ylim([0 1])
grid on
toc
legend('Event A: At least one six in 4 tosses of a fair
dice',...
```

```
'Event B: At least one double six in 24 tosses of a pair of dice')
```

