ET 601: Computer Applications for Engineers 2013/2
 HW 4 - Due: January 15
 Lecturer: Asst. Prof. Dr.Prapun Suksompong (prapun@siit.tu.ac.th)

Instructions

(a) ONE part of a question will be graded (5 pt). Of course, you do not know which part will be selected; so you should work on all of them.
(b) It is important that you try to solve all problems. (5 pt)
(c) Submit your work as one pdf file (which contains the solution for all the questions). The PDF file name should be ET601_HW4_FIRSTNAME.pdf in which the FIRSTNAME part is replaced by your first name.

Problem 1. Someone has rolled a fair dice twice. You know that one of the rolls turned up a face value of six. What is the probability that the other roll turned up a six as well? [Tijms, 2007, Example 8.1, p. 244]

Hint: Not $\frac{1}{6}$.

Problem 2. In an experiment, A, B, C, and D are events with probabilities $P(A \cup B)=\frac{5}{8}$, $P(A)=\frac{3}{8}, P(C \cap D)=\frac{1}{3}$, and $P(C)=\frac{1}{2}$. Furthermore, A and B are disjoint, while C and D are independent.
(a) Find
(i) $P(A \cap B)$
(ii) $P(B)$
(iii) $P\left(A \cap B^{c}\right)$
(iv) $P\left(A \cup B^{c}\right)$
(b) Are A and B independent?
(c) Find
(i) $P(D)$
(ii) $P\left(C \cap D^{c}\right)$
(iii) $P\left(C^{c} \cap D^{c}\right)$
(iv) $P(C \mid D)$
(v) $P(C \cup D)$
(vi) $P\left(C \cup D^{c}\right)$
(d) Are C and D^{c} independent?

Problem 3. You have two coins, a fair one with probability of heads $\frac{1}{2}$ and an unfair one with probability of heads $\frac{1}{3}$, but otherwise identical. A coin is selected at random and tossed, falling heads up. How likely is it that it is the fair one? [Capinski and Zastawniak, 2003, Q7.28]

Problem 4. Suppose that for the general population, 1 in 5000 people carries the human immunodeficiency virus (HIV). A test for the presence of HIV yields either a positive $(+$) or negative (-) response. Suppose the test gives the correct answer 99% of the time.
(a) What is $P(-\mid H)$, the conditional probability that a person tests negative given that the person does have the HIV virus?
(b) What is $P(H \mid+)$, the conditional probability that a randomly chosen person has the HIV virus given that the person tests positive?

